BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

193 related articles for article (PubMed ID: 31157855)

  • 1. Evaluation of different computational methods on 5-methylcytosine sites identification.
    Lv H; Zhang ZM; Li SH; Tan JX; Chen W; Lin H
    Brief Bioinform; 2020 May; 21(3):982-995. PubMed ID: 31157855
    [TBL] [Abstract][Full Text] [Related]  

  • 2. m5CPred-SVM: a novel method for predicting m5C sites of RNA.
    Chen X; Xiong Y; Liu Y; Chen Y; Bi S; Zhu X
    BMC Bioinformatics; 2020 Oct; 21(1):489. PubMed ID: 33126851
    [TBL] [Abstract][Full Text] [Related]  

  • 3. im5C-DSCGA: A Proposed Hybrid Framework Based on Improved DenseNet and Attention Mechanisms for Identifying 5-methylcytosine Sites in Human RNA.
    Jia J; Qin L; Lei R
    Front Biosci (Landmark Ed); 2023 Dec; 28(12):346. PubMed ID: 38179749
    [TBL] [Abstract][Full Text] [Related]  

  • 4. XGBoost framework with feature selection for the prediction of RNA N5-methylcytosine sites.
    Abbas Z; Rehman MU; Tayara H; Zou Q; Chong KT
    Mol Ther; 2023 Aug; 31(8):2543-2551. PubMed ID: 37271991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MLm5C: A high-precision human RNA 5-methylcytosine sites predictor based on a combination of hybrid machine learning models.
    Kurata H; Harun-Or-Roshid M; Mehedi Hasan M; Tsukiyama S; Maeda K; Manavalan B
    Methods; 2024 Jul; 227():37-47. PubMed ID: 38729455
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Staem5: A novel computational approachfor accurate prediction of m5C site.
    Chai D; Jia C; Zheng J; Zou Q; Li F
    Mol Ther Nucleic Acids; 2021 Dec; 26():1027-1034. PubMed ID: 34786208
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction of m5C Modifications in RNA Sequences by Combining Multiple Sequence Features.
    Dou L; Li X; Ding H; Xu L; Xiang H
    Mol Ther Nucleic Acids; 2020 Sep; 21():332-342. PubMed ID: 32645685
    [TBL] [Abstract][Full Text] [Related]  

  • 8. iRNA-m5U: A sequence based predictor for identifying 5-methyluridine modification sites in Saccharomyces cerevisiae.
    Feng P; Chen W
    Methods; 2022 Jul; 203():28-31. PubMed ID: 33882361
    [TBL] [Abstract][Full Text] [Related]  

  • 9. m5CRegpred: Epitranscriptome Target Prediction of 5-Methylcytosine (m5C) Regulators Based on Sequencing Features.
    He Z; Xu J; Shi H; Wu S
    Genes (Basel); 2022 Apr; 13(4):. PubMed ID: 35456483
    [TBL] [Abstract][Full Text] [Related]  

  • 10. RNAm5Cfinder: A Web-server for Predicting RNA 5-methylcytosine (m5C) Sites Based on Random Forest.
    Li J; Huang Y; Yang X; Zhou Y; Zhou Y
    Sci Rep; 2018 Nov; 8(1):17299. PubMed ID: 30470762
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying RNA 5-methylcytosine sites via pseudo nucleotide compositions.
    Feng P; Ding H; Chen W; Lin H
    Mol Biosyst; 2016 Oct; 12(11):3307-3311. PubMed ID: 27531244
    [TBL] [Abstract][Full Text] [Related]  

  • 12. iMRM: a platform for simultaneously identifying multiple kinds of RNA modifications.
    Liu K; Chen W
    Bioinformatics; 2020 Jun; 36(11):3336-3342. PubMed ID: 32134472
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deepm5C: A deep-learning-based hybrid framework for identifying human RNA N5-methylcytosine sites using a stacking strategy.
    Hasan MM; Tsukiyama S; Cho JY; Kurata H; Alam MA; Liu X; Manavalan B; Deng HW
    Mol Ther; 2022 Aug; 30(8):2856-2867. PubMed ID: 35526094
    [TBL] [Abstract][Full Text] [Related]  

  • 14. m5Cpred-XS: A New Method for Predicting RNA m5C Sites Based on XGBoost and SHAP.
    Liu Y; Shen Y; Wang H; Zhang Y; Zhu X
    Front Genet; 2022; 13():853258. PubMed ID: 35432446
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Accurate RNA 5-methylcytosine site prediction based on heuristic physical-chemical properties reduction and classifier ensemble.
    Zhang M; Xu Y; Li L; Liu Z; Yang X; Yu DJ
    Anal Biochem; 2018 Jun; 550():41-48. PubMed ID: 29649472
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An improved residual network using deep fusion for identifying RNA 5-methylcytosine sites.
    Li X; Zhang S; Shi H
    Bioinformatics; 2022 Sep; 38(18):4271-4277. PubMed ID: 35866985
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Programmable RNA 5-methylcytosine (m5C) modification of cellular RNAs by dCasRx conjugated methyltransferase and demethylase.
    Zhang T; Zhao F; Li J; Sun X; Zhang X; Wang H; Fan P; Lai L; Li Z; Sui T
    Nucleic Acids Res; 2024 Apr; 52(6):2776-2791. PubMed ID: 38366553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. iRNAm5C-PseDNC: identifying RNA 5-methylcytosine sites by incorporating physical-chemical properties into pseudo dinucleotide composition.
    Qiu WR; Jiang SY; Xu ZC; Xiao X; Chou KC
    Oncotarget; 2017 Jun; 8(25):41178-41188. PubMed ID: 28476023
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DeepMRMP: A new predictor for multiple types of RNA modification sites using deep learning.
    Sun PP; Chen YB; Liu B; Gao YX; Han Y; He F; Ji JC
    Math Biosci Eng; 2019 Jul; 16(6):6231-6241. PubMed ID: 31698559
    [TBL] [Abstract][Full Text] [Related]  

  • 20. PseUI: Pseudouridine sites identification based on RNA sequence information.
    He J; Fang T; Zhang Z; Huang B; Zhu X; Xiong Y
    BMC Bioinformatics; 2018 Aug; 19(1):306. PubMed ID: 30157750
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.