These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
89 related articles for article (PubMed ID: 3115804)
1. Interaction of visual pigment with G-protein: effects of bleaching in native and reconstituted ROS preparations. Pepperberg DR; Anderson SM; Mangini NJ Exp Eye Res; 1987 Jul; 45(1):141-55. PubMed ID: 3115804 [TBL] [Abstract][Full Text] [Related]
2. Light-dependent binding of G-protein to outer segment membranes of toad photoreceptors. Mangini NJ; Pepperberg DR; Baehr W J Gen Physiol; 1986 Nov; 88(5):675-94. PubMed ID: 3097246 [TBL] [Abstract][Full Text] [Related]
3. Interphotoreceptor retinoid-binding protein promotes rhodopsin regeneration in toad photoreceptors. Okajima TI; Pepperberg DR; Ripps H; Wiggert B; Chader GJ Proc Natl Acad Sci U S A; 1990 Sep; 87(17):6907-11. PubMed ID: 2118660 [TBL] [Abstract][Full Text] [Related]
4. Investigation of rhodopsin catalyzed G-protein GTP-binding using [35S] GTP gamma S--effects of regeneration and hydroxylamine. Cook NJ; Pellicone C; Virmaux N Biochem Int; 1985 Apr; 10(4):647-53. PubMed ID: 3927920 [TBL] [Abstract][Full Text] [Related]
5. Cycloheptatrienylidene analog of 11-cis retinal. Formation of pigment in photoreceptor membranes. Crouch R; Nodes BR; Perlman JI; Pepperberg DR; Akita H; Nakanishi K Invest Ophthalmol Vis Sci; 1984 Apr; 25(4):419-28. PubMed ID: 6231263 [TBL] [Abstract][Full Text] [Related]
6. Interaction between photoexcited rhodopsin and peripheral enzymes in frog retinal rods. Influence on the postmetarhodopsin II decay and phosphorylation rate of rhodopsin. Pfister C; Kühn H; Chabre M Eur J Biochem; 1983 Nov; 136(3):489-99. PubMed ID: 6315431 [TBL] [Abstract][Full Text] [Related]
7. Flow of information in the light-triggered cyclic nucleotide cascade of vision. Fung BK; Hurley JB; Stryer L Proc Natl Acad Sci U S A; 1981 Jan; 78(1):152-6. PubMed ID: 6264430 [TBL] [Abstract][Full Text] [Related]
8. Rapid transducin deactivation in intact stacks of bovine rod outer segment disks as studied by light scattering techniques. Arrestin requires additional soluble proteins for rapid quenching of rhodopsin catalytic activity. Wagner R; Ryba N; Uhl R FEBS Lett; 1988 Aug; 235(1-2):103-8. PubMed ID: 3136032 [TBL] [Abstract][Full Text] [Related]
9. Phosphodiesterase activation by photoexcited rhodopsin is quenched when rhodopsin is phosphorylated and binds the intrinsic 48-kDa protein of rod outer segments. Wilden U; Hall SW; Kühn H Proc Natl Acad Sci U S A; 1986 Mar; 83(5):1174-8. PubMed ID: 3006038 [TBL] [Abstract][Full Text] [Related]
10. Illumination of bovine photoreceptor membranes causes phosphorylation of both bleached and unbleached rhodopsin molecules. Aton BR Biochemistry; 1986 Feb; 25(3):677-80. PubMed ID: 3955023 [TBL] [Abstract][Full Text] [Related]
11. Regeneration of rhodopsin and isorhodopsin in rod outer segment preparations: absence of effect of solvent parameters. Lacy ME; Veronee CD; Crouch RK Physiol Chem Phys Med NMR; 1984; 16(4):275-81. PubMed ID: 6240663 [TBL] [Abstract][Full Text] [Related]
12. Guanine nucleotide binding characteristics of transducin: essential role of rhodopsin for rapid exchange of guanine nucleotides. Fawzi AB; Northup JK Biochemistry; 1990 Apr; 29(15):3804-12. PubMed ID: 2187531 [TBL] [Abstract][Full Text] [Related]
13. Preparation of bovine rod outer segment membranes capable of regenerating visual pigment with added 11-cis-Retinol. Sack RA Methods Enzymol; 1982; 81():506-9. PubMed ID: 7098895 [No Abstract] [Full Text] [Related]
14. Competition between retinal and 3-dehydroretinal for opsin in the regeneration of visual pigment. Suzuki T; Makino-Tasaka M; Miyata S Vision Res; 1985; 25(2):149-54. PubMed ID: 3160161 [TBL] [Abstract][Full Text] [Related]
15. Use of 8-azidoguanosine 5'-[gamma-32P]triphosphate as a probe of the guanosine 5'-triphosphate binding protein subunits in bovine rod outer segments. Kohnken RE; Mc Connell DG Biochemistry; 1985 Jul; 24(14):3803-9. PubMed ID: 3929835 [TBL] [Abstract][Full Text] [Related]
16. Reconstitution of rhodopsin and the cGMP cascade in polymerized bilayer membranes. Tyminski PN; Latimer LH; O'Brien DF Biochemistry; 1988 Apr; 27(8):2696-705. PubMed ID: 2840946 [TBL] [Abstract][Full Text] [Related]
17. Binding of rhodopsin and rhodopsin analogues to transducin, rhodopsin kinase and arrestin-1. Araujo NA; Sanz-Rodríguez CE; Bubis J World J Biol Chem; 2014 May; 5(2):254-68. PubMed ID: 24921014 [TBL] [Abstract][Full Text] [Related]
18. Production of antibodies against rhodopsin after immunization with beta gamma-subunits of transducin: evidence for interaction of beta gamma-subunits of guanosine 5'-triphosphate binding proteins with receptor. Halpern JL; Chang PP; Tsai SC; Adamik R; Kanaho Y; Sohn R; Moss J; Vaughan M Biochemistry; 1987 Mar; 26(6):1655-8. PubMed ID: 3109471 [TBL] [Abstract][Full Text] [Related]
19. [Inhibitory effect of pertussis toxin on the metabolism of guanine nucleotides in transducin from bovine outer rod segments]. Rybin VO; Gureeva AA Biokhimiia; 1986 Jul; 51(7):1216-22. PubMed ID: 3089334 [TBL] [Abstract][Full Text] [Related]
20. Axial diffusion of retinol in isolated frog rod outer segments following substantial bleaches of visual pigment. Sears RC; Kaplan MW Vision Res; 1989; 29(11):1485-92. PubMed ID: 2635474 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]