These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 31158157)
1. Microdeformation of RBCs under oxidative stress measured by digital holographic microscopy and optical tweezers. Liu J; Zhu L; Zhang F; Dong M; Qu X Appl Opt; 2019 May; 58(15):4042-4046. PubMed ID: 31158157 [TBL] [Abstract][Full Text] [Related]
2. Assessment of red blood cell deformability in type 2 diabetes mellitus and diabetic retinopathy by dual optical tweezers stretching technique. Agrawal R; Smart T; Nobre-Cardoso J; Richards C; Bhatnagar R; Tufail A; Shima D; H Jones P; Pavesio C Sci Rep; 2016 Mar; 6():15873. PubMed ID: 26976672 [TBL] [Abstract][Full Text] [Related]
3. Biolens behavior of RBCs under optically-induced mechanical stress. Merola F; Barroso Á; Miccio L; Memmolo P; Mugnano M; Ferraro P; Denz C Cytometry A; 2017 May; 91(5):527-533. PubMed ID: 28296044 [TBL] [Abstract][Full Text] [Related]
4. Mechanical characterization of human red blood cells under different osmotic conditions by robotic manipulation with optical tweezers. Tan Y; Sun D; Wang J; Huang W IEEE Trans Biomed Eng; 2010 Jul; 57(7):1816-25. PubMed ID: 20176536 [TBL] [Abstract][Full Text] [Related]
5. Automated quantitative analysis of 3D morphology and mean corpuscular hemoglobin in human red blood cells stored in different periods. Moon I; Yi F; Lee YH; Javidi B; Boss D; Marquet P Opt Express; 2013 Dec; 21(25):30947-57. PubMed ID: 24514667 [TBL] [Abstract][Full Text] [Related]
6. AI-based analysis of 3D position and orientation of red blood cells using a digital in-line holographic microscopy. Kim Y; Kim J; Seo E; Lee SJ Biosens Bioelectron; 2023 Jun; 229():115232. PubMed ID: 36963327 [TBL] [Abstract][Full Text] [Related]
7. Towards 3D modelling and imaging of infection scenarios at the single cell level using holographic optical tweezers and digital holographic microscopy. Kemper B; Barroso Á; Woerdemann M; Dewenter L; Vollmer A; Schubert R; Mellmann A; von Bally G; Denz C J Biophotonics; 2013 Mar; 6(3):260-6. PubMed ID: 22700281 [TBL] [Abstract][Full Text] [Related]
8. 3D morphometry of red blood cells by digital holography. Memmolo P; Miccio L; Merola F; Gennari O; Netti PA; Ferraro P Cytometry A; 2014 Dec; 85(12):1030-6. PubMed ID: 25242067 [TBL] [Abstract][Full Text] [Related]
9. Orientational dynamics of human red blood cells in an optical trap. Parthasarathi P; Nagesh BV; Lakkegowda Y; Iyengar SS; Ananthamurthy S; Bhattacharya S J Biomed Opt; 2013 Feb; 18(2):25001. PubMed ID: 23381225 [TBL] [Abstract][Full Text] [Related]
10. Biomechanics of Ex Vivo-Generated Red Blood Cells Investigated by Optical Tweezers and Digital Holographic Microscopy. Bernecker C; Lima MARBF; Ciubotaru CD; Schlenke P; Dorn I; Cojoc D Cells; 2021 Mar; 10(3):. PubMed ID: 33806520 [TBL] [Abstract][Full Text] [Related]
11. Three-dimensional counting of morphologically normal human red blood cells via digital holographic microscopy. Yi F; Moon I; Lee YH J Biomed Opt; 2015 Jan; 20(1):016005. PubMed ID: 25567613 [TBL] [Abstract][Full Text] [Related]
12. Monitoring of laser micromanipulated optically trapped cells by digital holographic microscopy. Kemper B; Langehanenberg P; Höink A; von Bally G; Wottowah F; Schinkinger S; Guck J; Käs J; Bredebusch I; Schnekenburger J; Schütze K J Biophotonics; 2010 Jul; 3(7):425-31. PubMed ID: 20533430 [TBL] [Abstract][Full Text] [Related]
13. Orientation of erythrocytes in optical trap revealed by confocal fluorescence microscopy. Mohanty K; Mohanty S; Monajembashi S; Greulich KO J Biomed Opt; 2007; 12(6):060506. PubMed ID: 18163801 [TBL] [Abstract][Full Text] [Related]
14. Multi-beam bilateral teleoperation of holographic optical tweezers. Onda K; Arai F Opt Express; 2012 Feb; 20(4):3633-41. PubMed ID: 22418122 [TBL] [Abstract][Full Text] [Related]
15. Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy. Park H; Hong SH; Kim K; Cho SH; Lee WJ; Kim Y; Lee SE; Park Y Sci Rep; 2015 Jun; 5():10827. PubMed ID: 26039793 [TBL] [Abstract][Full Text] [Related]
16. Automated tracking of temporal displacements of a red blood cell obtained by time-lapse digital holographic microscopy. Moon I; Yi F; Rappaz B Appl Opt; 2016 Jan; 55(3):A86-94. PubMed ID: 26835962 [TBL] [Abstract][Full Text] [Related]
17. Deformation behaviour of stomatocyte, discocyte and echinocyte red blood cell morphologies during optical tweezers stretching. Geekiyanage NM; Sauret E; Saha SC; Flower RL; Gu YT Biomech Model Mechanobiol; 2020 Oct; 19(5):1827-1843. PubMed ID: 32100179 [TBL] [Abstract][Full Text] [Related]
18. Nanomechanical characterization of red blood cells using optical tweezers. Li C; Liu KK J Mater Sci Mater Med; 2008 Apr; 19(4):1529-35. PubMed ID: 18214643 [TBL] [Abstract][Full Text] [Related]
19. Three-dimensional light-scattering and deformation of individual biconcave human blood cells in optical tweezers. Yu L; Sheng Y; Chiou A Opt Express; 2013 May; 21(10):12174-84. PubMed ID: 23736438 [TBL] [Abstract][Full Text] [Related]
20. Human red blood cell recognition enhancement with three-dimensional morphological features obtained by digital holographic imaging. Jaferzadeh K; Moon I J Biomed Opt; 2016 Dec; 21(12):126015. PubMed ID: 28006044 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]