These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
234 related articles for article (PubMed ID: 31158310)
1. Impaired vocal communication, sleep-related discharges, and transient alteration of slow-wave sleep in developing mice lacking the GluN2A subunit of N-methyl-d-aspartate receptors. Salmi M; Del Gallo F; Minlebaev M; Zakharov A; Pauly V; Perron P; Pons-Bennaceur A; Corby-Pellegrino S; Aniksztejn L; Lenck-Santini PP; Epsztein J; Khazipov R; Burnashev N; Bertini G; Szepetowski P Epilepsia; 2019 Jul; 60(7):1424-1437. PubMed ID: 31158310 [TBL] [Abstract][Full Text] [Related]
2. Transient microstructural brain anomalies and epileptiform discharges in mice defective for epilepsy and language-related NMDA receptor subunit gene Grin2a. Salmi M; Bolbos R; Bauer S; Minlebaev M; Burnashev N; Szepetowski P Epilepsia; 2018 Oct; 59(10):1919-1930. PubMed ID: 30146685 [TBL] [Abstract][Full Text] [Related]
3. A lack of GluN2A-containing NMDA receptors confers a vulnerability to redox dysregulation: Consequences on parvalbumin interneurons, and their perineuronal nets. Cardis R; Cabungcal JH; Dwir D; Do KQ; Steullet P Neurobiol Dis; 2018 Jan; 109(Pt A):64-75. PubMed ID: 29024713 [TBL] [Abstract][Full Text] [Related]
4. Clinical Forms and Li X; Xie LL; Han W; Hong SQ; Ma JN; Wang J; Jiang L Front Pediatr; 2020; 8():574803. PubMed ID: 33240831 [No Abstract] [Full Text] [Related]
5. Genetic etiologies of the electrical status epilepticus during slow wave sleep: systematic review. Kessi M; Peng J; Yang L; Xiong J; Duan H; Pang N; Yin F BMC Genet; 2018 Jul; 19(1):40. PubMed ID: 29976148 [TBL] [Abstract][Full Text] [Related]
6. Functional Properties of Human NMDA Receptors Associated with Epilepsy-Related Mutations of GluN2A Subunit. Sibarov DA; Bruneau N; Antonov SM; Szepetowski P; Burnashev N; Giniatullin R Front Cell Neurosci; 2017; 11():155. PubMed ID: 28611597 [TBL] [Abstract][Full Text] [Related]
7. GRIN2A mutations in epilepsy-aphasia spectrum disorders. Yang X; Qian P; Xu X; Liu X; Wu X; Zhang Y; Yang Z Brain Dev; 2018 Mar; 40(3):205-210. PubMed ID: 29056244 [TBL] [Abstract][Full Text] [Related]
8. Mouse mutants in schizophrenia risk genes GRIN2A and AKAP11 show EEG abnormalities in common with schizophrenia patients. Herzog LE; Wang L; Yu E; Choi S; Farsi Z; Song BJ; Pan JQ; Sheng M Transl Psychiatry; 2023 Mar; 13(1):92. PubMed ID: 36914641 [TBL] [Abstract][Full Text] [Related]
9. Cell-Type-Specific Dynamics of Calcium Activity in Cortical Circuits over the Course of Slow-Wave Sleep and Rapid Eye Movement Sleep. Niethard N; Brodt S; Born J J Neurosci; 2021 May; 41(19):4212-4222. PubMed ID: 33833082 [TBL] [Abstract][Full Text] [Related]
10. A de novo loss-of-function GRIN2A mutation associated with childhood focal epilepsy and acquired epileptic aphasia. Gao K; Tankovic A; Zhang Y; Kusumoto H; Zhang J; Chen W; XiangWei W; Shaulsky GH; Hu C; Traynelis SF; Yuan H; Jiang Y PLoS One; 2017; 12(2):e0170818. PubMed ID: 28182669 [TBL] [Abstract][Full Text] [Related]
12. Melanin-concentrating hormone-expressing neurons adjust slow-wave sleep dynamics to catalyze paradoxical (REM) sleep. Varin C; Luppi PH; Fort P Sleep; 2018 Jun; 41(6):. PubMed ID: 29618134 [TBL] [Abstract][Full Text] [Related]
13. An Epilepsy-Associated GRIN2A Rare Variant Disrupts CaMKIIα Phosphorylation of GluN2A and NMDA Receptor Trafficking. Mota Vieira M; Nguyen TA; Wu K; Badger JD; Collins BM; Anggono V; Lu W; Roche KW Cell Rep; 2020 Sep; 32(9):108104. PubMed ID: 32877683 [TBL] [Abstract][Full Text] [Related]
14. Functional Investigation of a GRIN2A Variant Associated with Rolandic Epilepsy. Xu XX; Liu XR; Fan CY; Lai JX; Shi YW; Yang W; Su T; Xu JY; Luo JH; Liao WP Neurosci Bull; 2018 Apr; 34(2):237-246. PubMed ID: 28936771 [TBL] [Abstract][Full Text] [Related]
16. Regional cerebral glucose metabolism in children with deterioration of one or more cognitive functions and continuous spike-and-wave discharges during sleep. Maquet P; Hirsch E; Metz-Lutz MN; Motte J; Dive D; Marescaux C; Franck G Brain; 1995 Dec; 118 ( Pt 6)():1497-520. PubMed ID: 8595480 [TBL] [Abstract][Full Text] [Related]
17. Development of diurnal organization of EEG slow-wave activity and slow-wave sleep in the rat. Frank MG; Heller HC Am J Physiol; 1997 Aug; 273(2 Pt 2):R472-8. PubMed ID: 9277528 [TBL] [Abstract][Full Text] [Related]
18. Neuroligin-2 shapes individual slow waves during slow-wave sleep and the response to sleep deprivation in mice. Leduc T; El Alami H; Bougadir K; Bélanger-Nelson E; Mongrain V Mol Autism; 2024 Apr; 15(1):13. PubMed ID: 38570872 [TBL] [Abstract][Full Text] [Related]
19. Continuous spike-waves during slow-wave sleep in a mouse model of focal cortical dysplasia. Sun QQ; Zhou C; Yang W; Petrus D Epilepsia; 2016 Oct; 57(10):1581-1593. PubMed ID: 27527919 [TBL] [Abstract][Full Text] [Related]
20. A Critical Time-Window for the Selective Induction of Hippocampal Memory Consolidation by a Brief Episode of Slow-Wave Sleep. Lu Y; Zhu ZG; Ma QQ; Su YT; Han Y; Wang X; Duan S; Yu YQ Neurosci Bull; 2018 Dec; 34(6):1091-1099. PubMed ID: 30413937 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]