These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
289 related articles for article (PubMed ID: 31158454)
1. Systematic development of a high dosage formulation to enable direct compression of a poorly flowing API: A case study. Schaller BE; Moroney KM; Castro-Dominguez B; Cronin P; Belen-Girona J; Ruane P; Croker DM; Walker GM Int J Pharm; 2019 Jul; 566():615-630. PubMed ID: 31158454 [TBL] [Abstract][Full Text] [Related]
2. Analytical method development for powder characterization: Visualization of the critical drug loading affecting the processability of a formulation for direct compression. Hirschberg C; Sun CC; Rantanen J J Pharm Biomed Anal; 2016 Sep; 128():462-468. PubMed ID: 27368089 [TBL] [Abstract][Full Text] [Related]
3. Transfer and scale-up of the manufacturing of orodispersible mini-tablets from a compaction simulator to an industrial rotary tablet press. Lura A; Elezaj V; Kokott M; Fischer B; Breitkreutz J Int J Pharm; 2021 Jun; 602():120636. PubMed ID: 33895296 [TBL] [Abstract][Full Text] [Related]
4. Investigation of compressibility and compactibility parameters of roller compacted Theophylline and its binary mixtures. Hadžović E; Betz G; Hadžidedić S; El-Arini SK; Leuenberger H Int J Pharm; 2011 Sep; 416(1):97-103. PubMed ID: 21704142 [TBL] [Abstract][Full Text] [Related]
5. A compression behavior classification system of pharmaceutical powders for accelerating direct compression tablet formulation design. Dai S; Xu B; Zhang Z; Yu J; Wang F; Shi X; Qiao Y Int J Pharm; 2019 Dec; 572():118742. PubMed ID: 31648016 [TBL] [Abstract][Full Text] [Related]
6. A methodological evaluation and predictive in silico investigation into the multi-functionality of arginine in directly compressed tablets. ElShaer A; Kaialy W; Akhtar N; Iyire A; Hussain T; Alany R; Mohammed AR Eur J Pharm Biopharm; 2015 Oct; 96():272-81. PubMed ID: 26255158 [TBL] [Abstract][Full Text] [Related]
7. Influence of processing methods on physico-mechanical properties of Ibuprofen/HPC-SSL formulation. Chaturvedi K; Gajera BY; Xu T; Shah H; Dave RH Pharm Dev Technol; 2018 Dec; 23(10):1108-1116. PubMed ID: 29310491 [TBL] [Abstract][Full Text] [Related]
8. Evaluation of the effects of tableting speed on the relationships between compaction pressure, tablet tensile strength, and tablet solid fraction. Tye CK; Sun CC; Amidon GE J Pharm Sci; 2005 Mar; 94(3):465-72. PubMed ID: 15696587 [TBL] [Abstract][Full Text] [Related]
9. Improved blend and tablet properties of fine pharmaceutical powders via dry particle coating. Huang Z; Scicolone JV; Han X; Davé RN Int J Pharm; 2015 Jan; 478(2):447-55. PubMed ID: 25475016 [TBL] [Abstract][Full Text] [Related]
10. Effects of Particle Surface Roughness on In-Die Flow and Tableting Behavior of Lactose. Tay JYS; Kok BWT; Liew CV; Heng PWS J Pharm Sci; 2019 Sep; 108(9):3011-3019. PubMed ID: 31054886 [TBL] [Abstract][Full Text] [Related]
11. Impact of Different Dry and Wet Granulation Techniques on Granule and Tablet Properties: A Comparative Study. Arndt OR; Baggio R; Adam AK; Harting J; Franceschinis E; Kleinebudde P J Pharm Sci; 2018 Dec; 107(12):3143-3152. PubMed ID: 30244008 [TBL] [Abstract][Full Text] [Related]
12. Influence of the drug deformation behaviour on the predictability of compressibility and compactibility of binary mixtures. Wünsch I; Finke JH; John E; Juhnke M; Kwade A Int J Pharm; 2022 Oct; 626():122117. PubMed ID: 35985527 [TBL] [Abstract][Full Text] [Related]
13. Crystal and Particle Engineering Strategies for Improving Powder Compression and Flow Properties to Enable Continuous Tablet Manufacturing by Direct Compression. Chattoraj S; Sun CC J Pharm Sci; 2018 Apr; 107(4):968-974. PubMed ID: 29247737 [TBL] [Abstract][Full Text] [Related]
14. The influence of API concentration on the roller compaction process: modeling and prediction of the post compacted ribbon, granule and tablet properties using multivariate data analysis. Boersen N; Carvajal MT; Morris KR; Peck GE; Pinal R Drug Dev Ind Pharm; 2015; 41(9):1470-8. PubMed ID: 25212638 [TBL] [Abstract][Full Text] [Related]
15. A quality by design approach to investigate the effect of mannitol and dicalcium phosphate qualities on roll compaction. Souihi N; Dumarey M; Wikström H; Tajarobi P; Fransson M; Svensson O; Josefson M; Trygg J Int J Pharm; 2013 Apr; 447(1-2):47-61. PubMed ID: 23434544 [TBL] [Abstract][Full Text] [Related]
16. The performance of HPMC matrix tablets using various agglomeration manufacturing processes. Košir D; Vrečer F Drug Dev Ind Pharm; 2017 Feb; 43(2):329-337. PubMed ID: 27739880 [TBL] [Abstract][Full Text] [Related]
17. Challenges in the transfer and scale-up of mini-tableting: Case study with losartan potassium. Lura V; Klinken S; Breitkreutz J Eur J Pharm Biopharm; 2023 Nov; 192():161-173. PubMed ID: 37820883 [TBL] [Abstract][Full Text] [Related]
18. Particle size distribution and evolution in tablet structure during and after compaction. Fichtner F; Rasmuson A; Alderborn G Int J Pharm; 2005 Mar; 292(1-2):211-25. PubMed ID: 15725568 [TBL] [Abstract][Full Text] [Related]
19. Particle Engineering for Enabling a Formulation Platform Suitable for Manufacturing Low-Dose Tablets by Direct Compression. Sun WJ; Aburub A; Sun CC J Pharm Sci; 2017 Jul; 106(7):1772-1777. PubMed ID: 28322940 [TBL] [Abstract][Full Text] [Related]
20. Direct compression of chitosan: process and formulation factors to improve powder flow and tablet performance. Buys GM; du Plessis LH; Marais AF; Kotze AF; Hamman JH Curr Drug Deliv; 2013 Jun; 10(3):348-56. PubMed ID: 23545146 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]