These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
522 related articles for article (PubMed ID: 31158623)
41. Biochars modify the degradation pathways of dewatered sludge by regulating active microorganisms during gut digestion of earthworms. Huang K; Guan M; Chen J; Xu J; Xia H; Li Y Sci Total Environ; 2022 Jul; 828():154496. PubMed ID: 35288128 [TBL] [Abstract][Full Text] [Related]
42. [Changes in Heavy Metal Speciation and Release Behavior Before and After Sludge Composting Under a Phosphate-rich Atmosphere]. Li Y; Fang W; Qi GX; Wei YH; Liu JG; Li RD Huan Jing Ke Xue; 2018 Jun; 39(6):2786-2793. PubMed ID: 29965636 [TBL] [Abstract][Full Text] [Related]
43. Comparative study of vermicomposting of garden waste and cow dung using Eisenia fetida. Li Y; Yang X; Gao W; Qiu J; Li Y Environ Sci Pollut Res Int; 2020 Mar; 27(9):9646-9657. PubMed ID: 31925695 [TBL] [Abstract][Full Text] [Related]
44. Vermiremediation of polycyclic aromatic hydrocarbons and heavy metals in sewage sludge composting process. Rorat A; Wloka D; Grobelak A; Grosser A; Sosnecka A; Milczarek M; Jelonek P; Vandenbulcke F; Kacprzak M J Environ Manage; 2017 Feb; 187():347-353. PubMed ID: 27836561 [TBL] [Abstract][Full Text] [Related]
45. Valorization of fecal sludge stabilization via vermicomposting in microcosm enriched substrates using organic soils for vermicompost production. Nsiah-Gyambibi R; Essandoh HMK; Asiedu NY; Fei-Baffoe B Heliyon; 2021 Mar; 7(3):e06422. PubMed ID: 33732939 [TBL] [Abstract][Full Text] [Related]
46. Effect of biochar on the extractability of heavy metals (Cd, Cu, Pb, and Zn) and enzyme activity in soil. Yang X; Liu J; McGrouther K; Huang H; Lu K; Guo X; He L; Lin X; Che L; Ye Z; Wang H Environ Sci Pollut Res Int; 2016 Jan; 23(2):974-84. PubMed ID: 25772863 [TBL] [Abstract][Full Text] [Related]
47. Vermicomposting of Organic Waste with Dohaish EJAB Pak J Biol Sci; 2020 Mar; 23(4):501-509. PubMed ID: 32363835 [TBL] [Abstract][Full Text] [Related]
48. Vermicomposting of citronella bagasse and paper mill sludge mixture employing Eisenia fetida. Boruah T; Barman A; Kalita P; Lahkar J; Deka H Bioresour Technol; 2019 Dec; 294():122147. PubMed ID: 31557650 [TBL] [Abstract][Full Text] [Related]
49. Comparative analysis of vermicompost quality produced from rice straw and paper waste employing earthworm Eisenia fetida (Sav.). Sharma K; Garg VK Bioresour Technol; 2018 Feb; 250():708-715. PubMed ID: 29223091 [TBL] [Abstract][Full Text] [Related]
50. Bioconcentrations of metals (Fe, Cu, Zn, Pb) in earthworms (Eisenia fetida), inoculated in municipal sewage sludge: do earthworms pose a possible risk of terrestrial food chain contamination? Suthar S; Singh S Environ Toxicol; 2009 Feb; 24(1):25-32. PubMed ID: 18461553 [TBL] [Abstract][Full Text] [Related]
51. Interaction effects of salinity, sewage sludge, and earthworms on the fractionations of Zn and Cu, and the metals uptake by the earthworms in a Zn- and Cu-contaminated calcareous soil. Karimi F; Rahimi G; Kolahchi Z Environ Sci Pollut Res Int; 2020 Apr; 27(10):10565-10580. PubMed ID: 31942712 [TBL] [Abstract][Full Text] [Related]
52. Effects of combined composting and vermicomposting of waste sludge on arsenic fate and bioavailability. Maňáková B; Kuta J; Svobodová M; Hofman J J Hazard Mater; 2014 Sep; 280():544-51. PubMed ID: 25209831 [TBL] [Abstract][Full Text] [Related]
53. Changes in heavy metal mobility and availability from contaminated wetland soil remediated with combined biochar-compost. Liang J; Yang Z; Tang L; Zeng G; Yu M; Li X; Wu H; Qian Y; Li X; Luo Y Chemosphere; 2017 Aug; 181():281-288. PubMed ID: 28448909 [TBL] [Abstract][Full Text] [Related]
54. Biotransformation of bakery industry sludge into valuable product using vermicomposting. Yadav A; Garg VK Bioresour Technol; 2019 Feb; 274():512-517. PubMed ID: 30553963 [TBL] [Abstract][Full Text] [Related]
55. Speciation and transformation of heavy metals during vermicomposting of animal manure. Lv B; Xing M; Yang J Bioresour Technol; 2016 Jun; 209():397-401. PubMed ID: 26976060 [TBL] [Abstract][Full Text] [Related]
56. Unveiling the earthworm-associated preferential remediation of emerging organic pollutants and heavy metals in MSW-based vermicomposting systems: Insights through the lens of multivariate techniques and novel empirical models. Pegu R; Prakash A; Borah P; Paul S; Bhattacharya SS Chemosphere; 2024 Sep; 363():142782. PubMed ID: 38972460 [TBL] [Abstract][Full Text] [Related]
57. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Smith SR Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760 [TBL] [Abstract][Full Text] [Related]
58. Management of banana crop waste biomass using vermicomposting technology. Mago M; Yadav A; Gupta R; Garg VK Bioresour Technol; 2021 Apr; 326():124742. PubMed ID: 33508640 [TBL] [Abstract][Full Text] [Related]
59. Effects of biochars on the fate of antibiotics and their resistance genes during vermicomposting of dewatered sludge. Kui H; Jingyang C; Mengxin G; Hui X; Li L J Hazard Mater; 2020 Oct; 397():122767. PubMed ID: 32388093 [TBL] [Abstract][Full Text] [Related]
60. Composting and vermicomposting of sewage sludge at various C/N ratios: Technological feasibility and end-product quality. Dume B; Hanc A; Svehla P; Michal P; Chane AD; Nigussie A Ecotoxicol Environ Saf; 2023 Sep; 263():115255. PubMed ID: 37478570 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]