These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31159008)
1. Sporostatic, Sporicidal, and Heat-Sensitizing Action of Maleic Acid against Spores of Proteolytic Clostridium botulinum. Miller AJ; Call JE; Bowles BL J Food Prot; 1996 Feb; 59(2):115-120. PubMed ID: 31159008 [TBL] [Abstract][Full Text] [Related]
2. Antibotulinal Properties of Selected Aromatic and Aliphatic Aldehydes. Bowles BL; Miller AJ J Food Prot; 1993 Sep; 56(9):788-794. PubMed ID: 31113058 [TBL] [Abstract][Full Text] [Related]
3. Inhibitory Potential of Four-Carbon Dicarboxylic Acids on Clostridium botulinum Spores in an Uncured Turkey Product. Miller AJ; Call JE J Food Prot; 1994 Aug; 57(8):679-683. PubMed ID: 31121759 [TBL] [Abstract][Full Text] [Related]
4. Antibotulinal Properties of Selected Aromatic and Aliphatic Ketones. Bowles BL; Miller AJ J Food Prot; 1993 Sep; 56(9):795-800. PubMed ID: 31113050 [TBL] [Abstract][Full Text] [Related]
5. Effect of ethanol on the growth of Clostridium botulinum. Daifas DP; Smith JP; Blanchfield B; Cadieux B; Sanders G; Austin JW J Food Prot; 2003 Apr; 66(4):610-7. PubMed ID: 12696684 [TBL] [Abstract][Full Text] [Related]
6. Evaluation of the effect of acetylsalicylic acid on Clostridium botulinum growth and toxin production. Ma L; Zhang G; Sobel J; Doyle MP J Food Prot; 2007 Dec; 70(12):2860-3. PubMed ID: 18095444 [TBL] [Abstract][Full Text] [Related]
7. High pressure thermal inactivation of Clostridium botulinum type E endospores - kinetic modeling and mechanistic insights. Lenz CA; Reineke K; Knorr D; Vogel RF Front Microbiol; 2015; 6():652. PubMed ID: 26191048 [TBL] [Abstract][Full Text] [Related]
8. Factors influencing Clostridium botulinum spore germination, outgrowth, and toxin formation in acidified media. Wong DM; Young-Perkins KE; Merson RL Appl Environ Microbiol; 1988 Jun; 54(6):1446-50. PubMed ID: 3046489 [TBL] [Abstract][Full Text] [Related]
9. Predictive model for Clostridium perfringens growth in roast beef during cooling and inhibition of spore germination and outgrowth by organic acid salts. Sánchez-Plata MX; Amézquita A; Blankenship E; Burson DE; Juneja V; Thippareddi H J Food Prot; 2005 Dec; 68(12):2594-605. PubMed ID: 16355831 [TBL] [Abstract][Full Text] [Related]
10. Effect of sporulation temperature on the resistance of Clostridium botulinum type A spores to thermal and high pressure processing. Marshall KM; Nowaczyk L; Morrissey TR; Loeza V; Halik LA; Skinner GE; Reddy NR; Fleischman GJ; Larkin JW J Food Prot; 2015 Jan; 78(1):146-50. PubMed ID: 25581189 [TBL] [Abstract][Full Text] [Related]
11. Risk assessment of proteolytic Clostridium botulinum in canned foie gras. Membré JM; Diao M; Thorin C; Cordier G; Zuber F; André S Int J Food Microbiol; 2015 Oct; 210():62-72. PubMed ID: 26093992 [TBL] [Abstract][Full Text] [Related]
12. A predictive growth model for Clostridium botulinum during cooling of cooked uncured ground beef. Juneja VK; Purohit AS; Golden M; Osoria M; Glass KA; Mishra A; Thippareddi H; Devkumar G; Mohr TB; Minocha U; Silverman M; Schaffner DW Food Microbiol; 2021 Feb; 93():103618. PubMed ID: 32912576 [TBL] [Abstract][Full Text] [Related]
13. Heat Resistance of Clostridium botulinum Type G in Phosphate Buffer. Lynt RK; Solomon HM; Kautter DA J Food Prot; 1984 Jun; 47(6):463-466. PubMed ID: 30934481 [TBL] [Abstract][Full Text] [Related]
14. Synergistic interaction between pH and NaCl in the limits of germination and outgrowth of Clostridium sporogenes and Group I Clostridium botulinum vegetative cells and spores after heat treatment. Boix E; Coroller L; Couvert O; Planchon S; van Vliet AHM; Brunt J; Peck MW; Rasetti-Escargueil C; Lemichez E; Popoff MR; André S Food Microbiol; 2022 Sep; 106():104055. PubMed ID: 35690448 [TBL] [Abstract][Full Text] [Related]
15. Effect of High Pressures in Combination with Temperature on the Inactivation of Spores of Nonproteolytic Clostridium botulinum Types B and F. Skinner GE; Morrissey TR; Patazca E; Loeza V; Halik LA; Schill KM; Reddy NR J Food Prot; 2018 Feb; 81(2):261-271. PubMed ID: 29360398 [TBL] [Abstract][Full Text] [Related]
16. Thermal and Pressure-Assisted Thermal Destruction Kinetics for Spores of Type A Clostridium botulinum and Clostridium sporogenes PA3679. Reddy NR; Patazca E; Morrissey TR; Skinner GE; Loeza V; Schill KM; Larkin JW J Food Prot; 2016 Feb; 79(2):253-62. PubMed ID: 26818986 [TBL] [Abstract][Full Text] [Related]
17. Heat Resistance of Spores of Non-Proteolytic Type B Clostridium botulinum. Scott VN; Bernard DT J Food Prot; 1982 Aug; 45(10):909-912. PubMed ID: 30866256 [TBL] [Abstract][Full Text] [Related]
18. Comparison of Organic Acid Salts for Clostridium botulinum Control in an Uncured Turkey Product. Mller AJ; Call JE; Whiting RC J Food Prot; 1993 Nov; 56(11):958-962. PubMed ID: 31113090 [TBL] [Abstract][Full Text] [Related]
19. Sporicidal action of auto-oxidized ascorbic acid for Clostridium. Eller C; Edwards FF; Wynne ES Appl Microbiol; 1968 Feb; 16(2):349-54. PubMed ID: 4967070 [TBL] [Abstract][Full Text] [Related]
20. Comparison of pressure and heat resistance of Clostridium botulinum and other endospores in mashed carrots. Margosch D; Ehrmann MA; Gänzle MG; Vogel RF J Food Prot; 2004 Nov; 67(11):2530-7. PubMed ID: 15553637 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]