BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31159081)

  • 1. Microbial Evaluation of the Biotransfer Potential from Surfaces with Bacillus Biofilms after Rinsing and Cleaning Procedures in Closed Food-Processing Systems.
    Wirtanen G; Husmark U; Mattila-Sandholm T
    J Food Prot; 1996 Jul; 59(7):727-733. PubMed ID: 31159081
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inactivation and removal of Bacillus cereus by sanitizer and detergent.
    Peng JS; Tsai WC; Chou CC
    Int J Food Microbiol; 2002 Jul; 77(1-2):11-8. PubMed ID: 12076028
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Efficiency of Different Disinfectants on
    Silva HO; Lima JAS; Aguilar CEG; Rossi GAM; Mathias LA; Vidal AMC
    Front Microbiol; 2018; 9():2934. PubMed ID: 30555449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Biofilm formation potential of Bacillus toyonensis and Pseudomonas aeruginosa on the stainless steel test surfaces in a model dairy batch system.
    Kütük D; Temiz A
    Folia Microbiol (Praha); 2022 Jun; 67(3):405-417. PubMed ID: 35031974
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Removal of
    Tirpanci Sivri G; Abdelhamid AG; Kasler DR; Yousef AE
    Front Microbiol; 2023; 14():1141907. PubMed ID: 37125185
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Removal of Pseudomonas putida biofilm and associated extracellular polymeric substances from stainless steel by alkali cleaning.
    Antoniou K; Frank JF
    J Food Prot; 2005 Feb; 68(2):277-81. PubMed ID: 15726969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lethality of chlorine, chlorine dioxide, and a commercial produce sanitizer to Bacillus cereus and Pseudomonas in a liquid detergent, on stainless steel, and in biofilm.
    Kreske AC; Ryu JH; Pettigrew CA; Beuchat LR
    J Food Prot; 2006 Nov; 69(11):2621-34. PubMed ID: 17133805
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adhesion and removal kinetics of Bacillus cereus biofilms on Ni-PTFE modified stainless steel.
    Huang K; McLandsborough LA; Goddard JM
    Biofouling; 2016; 32(5):523-33. PubMed ID: 27020838
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A systematic characterization of the distribution, biofilm-forming potential and the resistance of the biofilms to the CIP processes of the bacteria in a milk powder processing factory.
    Zou M; Liu D
    Food Res Int; 2018 Nov; 113():316-326. PubMed ID: 30195526
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of a Method to Determine the Effectiveness of Cleaning Agents in Removal of Biofilm Derived Spores in Milking System.
    Ostrov I; Harel A; Bernstein S; Steinberg D; Shemesh M
    Front Microbiol; 2016; 7():1498. PubMed ID: 27713737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the effect of cleaning regimes on biofilms of thermophilic bacilli on stainless steel.
    Parkar SG; Flint SH; Brooks JD
    J Appl Microbiol; 2004; 96(1):110-6. PubMed ID: 14678164
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity.
    Faille C; Jullien C; Fontaine F; Bellon-Fontaine MN; Slomianny C; Benezech T
    Can J Microbiol; 2002 Aug; 48(8):728-38. PubMed ID: 12381029
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multicomponent cleaning verification of stainless steel surfaces for the removal of dairy residues using infrared microspectroscopy.
    Lang MP; Kocaoglu-Vurma NA; Harper WJ; Rodriguez-Saona LE
    J Food Sci; 2011 Mar; 76(2):C303-8. PubMed ID: 21535750
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The synergistic effect of enzymatic detergents on biofilm cleaning from different surfaces.
    Tsiaprazi-Stamou A; Monfort IY; Romani AM; Bakalis S; Gkatzionis K
    Biofouling; 2019 Sep; 35(8):883-899. PubMed ID: 31663364
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Using enzymes to remove biofilms of bacterial isolates sampled in the food-industry.
    Lequette Y; Boels G; Clarisse M; Faille C
    Biofouling; 2010 May; 26(4):421-31. PubMed ID: 20198521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Efficacy of gaseous chlorine dioxide in inactivating Bacillus cereus spores attached to and in a biofilm on stainless steel.
    Nam H; Seo HS; Bang J; Kim H; Beuchat LR; Ryu JH
    Int J Food Microbiol; 2014 Oct; 188():122-7. PubMed ID: 25090607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Quantitative assessment of the efficacy of spiral-wound membrane cleaning procedures to remove biofilms.
    Hijnen WA; Castillo C; Brouwer-Hanzens AH; Harmsen DJ; Cornelissen ER; van der Kooij D
    Water Res; 2012 Dec; 46(19):6369-81. PubMed ID: 23021522
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Resistance of pathogenic bacteria on the surface of stainless steel depending on attachment form and efficacy of chemical sanitizers.
    Bae YM; Baek SY; Lee SY
    Int J Food Microbiol; 2012 Feb; 153(3):465-73. PubMed ID: 22225983
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inhibitory Effects of Combinations of Chemicals on Escherichia coli, Bacillus cereus, and Staphylococcus aureus Biofilms during the Clean-in-Place Process at an Experimental Dairy Plant.
    Lee ES; Kim JH; Oh MH
    J Food Prot; 2020 Aug; 83(8):1302-1306. PubMed ID: 32236563
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Removal of Listeria monocytogenes biofilms on stainless steel surfaces through conventional and alternative cleaning solutions.
    Mazaheri T; Cervantes-Huamán BRH; Turitich L; Ripolles-Avila C; Rodríguez-Jerez JJ
    Int J Food Microbiol; 2022 Nov; 381():109888. PubMed ID: 36058130
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.