These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 31159122)

  • 81. Buffalo-milk enzyme levels, their sensitivity to heat inactivation, and their possible use as markers for pasteurization.
    Lombardi P; Avallone L; d'Angelo A; Mor T; Bogin E
    J Food Prot; 2000 Jul; 63(7):970-3. PubMed ID: 10914671
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Front-face fluorescence spectroscopy allows the characterization of mild heat treatments applied to milk. Relations with the denaturation of milk proteins.
    Kulmyrzaev AA; Levieux D; Dufour E
    J Agric Food Chem; 2005 Feb; 53(3):502-7. PubMed ID: 15686393
    [TBL] [Abstract][Full Text] [Related]  

  • 83. A comparative study of infrared and microwave heating for microbial decontamination of paprika powder.
    Eliasson L; Isaksson S; Lövenklev M; Ahrné L
    Front Microbiol; 2015; 6():1071. PubMed ID: 26483783
    [TBL] [Abstract][Full Text] [Related]  

  • 84. High-Temperature Short-Time Pasteurization System for Donor Milk in a Human Milk Bank Setting.
    Escuder-Vieco D; Espinosa-Martos I; Rodríguez JM; Corzo N; Montilla A; Siegfried P; Pallás-Alonso CR; Fernández L
    Front Microbiol; 2018; 9():926. PubMed ID: 29867837
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Evaluating the potential nonthermal microwave effects of microwave-assisted proteolytic reactions.
    Reddy PM; Huang YS; Chen CT; Chang PC; Ho YP
    J Proteomics; 2013 Mar; 80():160-70. PubMed ID: 23352896
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Strategic application of convective cooling to maximize the thermal gradient and reduce heat stress response in dairy cows.
    Spiers DE; Spain JN; Ellersieck MR; Lucy MC
    J Dairy Sci; 2018 Sep; 101(9):8269-8283. PubMed ID: 29935820
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Verification of radio frequency pasteurization treatment for controlling Aspergillus parasiticus on corn grains.
    Zheng A; Zhang L; Wang S
    Int J Food Microbiol; 2017 May; 249():27-34. PubMed ID: 28271854
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Comparison of glycation in conventionally and microwave-heated ovalbumin by high resolution mass spectrometry.
    Wang H; Tu ZC; Liu GX; Liu CM; Huang XQ; Xiao H
    Food Chem; 2013 Nov; 141(2):985-91. PubMed ID: 23790877
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling.
    Hosseini M; Stiasni N; Barbieri V; Kappe CO
    J Org Chem; 2007 Feb; 72(4):1417-24. PubMed ID: 17288387
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Effect of water activity on the thermal inactivation kinetics of Salmonella in milk powders.
    Wei X; Lau SK; Chaves BD; Danao MC; Agarwal S; Subbiah J
    J Dairy Sci; 2020 Aug; 103(8):6904-6917. PubMed ID: 32475668
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Effects of different industrial heating processes of milk on site-specific protein modifications and their relationship to in vitro and in vivo digestibility.
    Wada Y; Lönnerdal B
    J Agric Food Chem; 2014 May; 62(18):4175-85. PubMed ID: 24720734
    [TBL] [Abstract][Full Text] [Related]  

  • 92. Milk pH as a function of CO2 concentration, temperature, and pressure in a heat exchanger.
    Ma Y; Barbano DM
    J Dairy Sci; 2003 Dec; 86(12):3822-30. PubMed ID: 14740816
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Microwave Processing: Current Background and Effects on the Physicochemical and Microbiological Aspects of Dairy Products.
    Martins CPC; Cavalcanti RN; Couto SM; Moraes J; Esmerino EA; Silva MC; Raices RSL; Gut JAW; Ramaswamy HS; Tadini CC; Cruz AG
    Compr Rev Food Sci Food Saf; 2019 Jan; 18(1):67-83. PubMed ID: 33337017
    [TBL] [Abstract][Full Text] [Related]  

  • 94. In-home pasteurization of raw goat's milk by microwave treatment.
    Thompson JS; Thompson A
    Int J Food Microbiol; 1990 Jan; 10(1):59-64. PubMed ID: 2397150
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Potential applications of high pressure homogenisation in processing of liquid milk.
    Hayes MG; Fox PF; Kelly AL
    J Dairy Res; 2005 Feb; 72(1):25-33. PubMed ID: 15747728
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Numerical evaluation of lactoperoxidase inactivation during continuous pulsed electric field processing.
    Buckow R; Semrau J; Sui Q; Wan J; Knoerzer K
    Biotechnol Prog; 2012; 28(5):1363-75. PubMed ID: 22736564
    [TBL] [Abstract][Full Text] [Related]  

  • 97. High-Temperature Short-Time Preserves Human Milk's Bioactive Proteins and Their Function Better Than Pasteurization Techniques With Long Processing Times.
    Kontopodi E; Boeren S; Stahl B; van Goudoever JB; van Elburg RM; Hettinga K
    Front Pediatr; 2021; 9():798609. PubMed ID: 35127595
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Decoupling macronutrient interactions during heating of model infant milk formulas.
    Murphy EG; Fenelon MA; Roos YH; Hogan SA
    J Agric Food Chem; 2014 Oct; 62(43):10585-93. PubMed ID: 25251787
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Heating Milk for Microbial Destruction: A Historical Outline and Update
    Westhoff DC
    J Food Prot; 1978 Feb; 41(2):122-130. PubMed ID: 30795181
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Response surface methodology (RSM) in evaluation of the vitamin C concentrations in microwave treated milk.
    Bai Y; Saren G; Huo W
    J Food Sci Technol; 2015 Jul; 52(7):4647-51. PubMed ID: 26139939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.