These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 31159160)

  • 1. Sorption of Selected Heavy Metals with Different Relative Concentrations in Industrial Effluent on Biochar from Human Faecal Products and Pine-Bark.
    Koetlisi KA; Muchaonyerwa P
    Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159160
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of Biochar-Derived Sewage Sludge on Heavy Metal Adsorption and Immobilization in Soils.
    Zhou D; Liu D; Gao F; Li M; Luo X
    Int J Environ Res Public Health; 2017 Jun; 14(7):. PubMed ID: 28644399
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of pyrolysis temperature on properties and environmental safety of heavy metals in biochars derived from municipal sewage sludge.
    Jin J; Li Y; Zhang J; Wu S; Cao Y; Liang P; Zhang J; Wong MH; Wang M; Shan S; Christie P
    J Hazard Mater; 2016 Dec; 320():417-426. PubMed ID: 27585274
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting Cu and Zn sorption capacity of biochar from feedstock C/N ratio and pyrolysis temperature.
    Rodríguez-Vila A; Selwyn-Smith H; Enunwa L; Smail I; Covelo EF; Sizmur T
    Environ Sci Pollut Res Int; 2018 Mar; 25(8):7730-7739. PubMed ID: 29288302
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Application of biochar from sewage sludge to plant cultivation: Influence of pyrolysis temperature and biochar-to-soil ratio on yield and heavy metal accumulation.
    Song XD; Xue XY; Chen DZ; He PJ; Dai XH
    Chemosphere; 2014 Aug; 109():213-20. PubMed ID: 24582602
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Pyrolysis Temperature on the Heavy Metal Sorption Capacity of Biochar from Poultry Manure.
    Sobik-Szołtysek J; Wystalska K; Malińska K; Meers E
    Materials (Basel); 2021 Nov; 14(21):. PubMed ID: 34772093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Resource recovery and biochar characteristics from full-scale faecal sludge treatment and co-treatment with agricultural waste.
    Krueger BC; Fowler GD; Templeton MR; Moya B
    Water Res; 2020 Feb; 169():115253. PubMed ID: 31707178
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge.
    Smith SR
    Environ Int; 2009 Jan; 35(1):142-56. PubMed ID: 18691760
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Biosorption of chromium, copper and zinc by wine-processing waste sludge: single and multi-component system study.
    Liu CC; Wang MK; Chiou CS; Li YS; Yang CY; Lin YA
    J Hazard Mater; 2009 Nov; 171(1-3):386-92. PubMed ID: 19586716
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using sewage sludge with high ash content for biochar production and Cu(II) sorption.
    Fan J; Li Y; Yu H; Li Y; Yuan Q; Xiao H; Li F; Pan B
    Sci Total Environ; 2020 Apr; 713():136663. PubMed ID: 31958735
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental Investigation into the Effect of Pyrolysis on Chemical Forms of Heavy Metals in Sewage Sludge Biochar (SSB), with Brief Ecological Risk Assessment.
    Li B; Ding S; Fan H; Ren Y
    Materials (Basel); 2021 Jan; 14(2):. PubMed ID: 33477642
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Pyrolysis of waste biomass and plastics for production of biochar and its use for removal of heavy metals from aqueous solution.
    Singh E; Kumar A; Mishra R; You S; Singh L; Kumar S; Kumar R
    Bioresour Technol; 2021 Jan; 320(Pt A):124278. PubMed ID: 33099158
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biochar from co-pyrolysis of biological sludge and woody waste followed by chemical and thermal activation: end-of-waste procedure for sludge management and biochar sorption efficiency for anionic and cationic dyes.
    Bakari Z; Fichera M; El Ghadraoui A; Renai L; Giurlani W; Santianni D; Fibbi D; Bruzzoniti MC; Del Bubba M
    Environ Sci Pollut Res Int; 2024 May; 31(24):35249-35265. PubMed ID: 38720130
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Valorization of biosorbent obtained from a forestry waste: Competitive adsorption, desorption and transport of Cd, Cu, Ni, Pb and Zn.
    Cutillas-Barreiro L; Paradelo R; Igrexas-Soto A; Núñez-Delgado A; Fernández-Sanjurjo MJ; Álvarez-Rodriguez E; Garrote G; Nóvoa-Muñoz JC; Arias-Estévez M
    Ecotoxicol Environ Saf; 2016 Sep; 131():118-26. PubMed ID: 27232204
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications.
    Srinivasan P; Sarmah AK; Smernik R; Das O; Farid M; Gao W
    Sci Total Environ; 2015 Apr; 512-513():495-505. PubMed ID: 25644846
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Fate of Heavy Metals and Risk Assessment of Heavy Metal in Pyrolysis Coupling with Acid Washing Treatment for Sewage Sludge.
    Li Z; Yu D; Liu X; Wang Y
    Toxics; 2023 May; 11(5):. PubMed ID: 37235261
    [TBL] [Abstract][Full Text] [Related]  

  • 17. As(V)/Cr(VI) retention on un-amended and waste-amended soil samples: competitive experiments.
    Rivas-Pérez IM; Conde-Cid M; Nóvoa-Muñoz JC; Arias-Estévez M; Fernández-Sanjurjo MJ; Álvarez-Rodríguez E; Núñez-Delgado A
    Environ Sci Pollut Res Int; 2017 Jan; 24(1):1051-1059. PubMed ID: 27822690
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Eisenia fetida and biochar synergistically alleviate the heavy metals content during valorization of biosolids via enhancing vermicompost quality.
    Khan MB; Cui X; Jilani G; Lazzat U; Zehra A; Hamid Y; Hussain B; Tang L; Yang X; He Z
    Sci Total Environ; 2019 Sep; 684():597-609. PubMed ID: 31158623
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metal immobilization by sludge-derived biochar: roles of mineral oxides and carbonized organic compartment.
    Zhang W; Huang X; Jia Y; Rees F; Tsang DC; Qiu R; Wang H
    Environ Geochem Health; 2017 Apr; 39(2):379-389. PubMed ID: 27431418
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A review of biochar-based sorbents for separation of heavy metals from water.
    Shakoor MB; Ali S; Rizwan M; Abbas F; Bibi I; Riaz M; Khalil U; Niazi NK; Rinklebe J
    Int J Phytoremediation; 2020; 22(2):111-126. PubMed ID: 31686525
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.