These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
127 related articles for article (PubMed ID: 31159215)
1. A Fast and Powerful Empirical Bayes Method for Genome-Wide Association Studies. Chang T; Wei J; Liang M; An B; Wang X; Zhu B; Xu L; Zhang L; Gao X; Chen Y; Li J; Gao H Animals (Basel); 2019 May; 9(6):. PubMed ID: 31159215 [TBL] [Abstract][Full Text] [Related]
2. An efficient empirical Bayes method for genomewide association studies. Wang Q; Wei J; Pan Y; Xu S J Anim Breed Genet; 2016 Aug; 133(4):253-63. PubMed ID: 26582716 [TBL] [Abstract][Full Text] [Related]
3. An Efficient Score Test Integrated with Empirical Bayes for Genome-Wide Association Studies. Xiao J; Zhou Y; He S; Ren WL Front Genet; 2021; 12():742752. PubMed ID: 34659362 [TBL] [Abstract][Full Text] [Related]
4. pLARmEB: integration of least angle regression with empirical Bayes for multilocus genome-wide association studies. Zhang J; Feng JY; Ni YL; Wen YJ; Niu Y; Tamba CL; Yue C; Song Q; Zhang YM Heredity (Edinb); 2017 Jun; 118(6):517-524. PubMed ID: 28295030 [TBL] [Abstract][Full Text] [Related]
5. A genome-wide association study suggests several novel candidate genes for carcass traits in Chinese Simmental beef cattle. Chang T; Xia J; Xu L; Wang X; Zhu B; Zhang L; Gao X; Chen Y; Li J; Gao H Anim Genet; 2018 Aug; 49(4):312-316. PubMed ID: 29932466 [TBL] [Abstract][Full Text] [Related]
6. Multimarker and rare variants genomewide association studies for bone weight in Simmental cattle. Miao J; Wang X; Bao J; Jin S; Chang T; Xia J; Yang L; Zhu B; Xu L; Zhang L; Gao X; Chen Y; Li J; Gao H J Anim Breed Genet; 2018 Jun; 135(3):159-169. PubMed ID: 29696701 [TBL] [Abstract][Full Text] [Related]
7. Hybrid of Restricted and Penalized Maximum Likelihood Method for Efficient Genome-Wide Association Study. Ren W; Liang Z; He S; Xiao J Genes (Basel); 2020 Oct; 11(11):. PubMed ID: 33138126 [TBL] [Abstract][Full Text] [Related]
8. Combining Sparse Group Lasso and Linear Mixed Model Improves Power to Detect Genetic Variants Underlying Quantitative Traits. Guo Y; Wu C; Guo M; Zou Q; Liu X; Keinan A Front Genet; 2019; 10():271. PubMed ID: 31024614 [TBL] [Abstract][Full Text] [Related]
9. Comparison of methods to account for relatedness in genome-wide association studies with family-based data. Eu-Ahsunthornwattana J; Miller EN; Fakiola M; ; Jeronimo SM; Blackwell JM; Cordell HJ PLoS Genet; 2014 Jul; 10(7):e1004445. PubMed ID: 25033443 [TBL] [Abstract][Full Text] [Related]
10. Methodological implementation of mixed linear models in multi-locus genome-wide association studies. Wen YJ; Zhang H; Ni YL; Huang B; Zhang J; Feng JY; Wang SB; Dunwell JM; Zhang YM; Wu R Brief Bioinform; 2018 Jul; 19(4):700-712. PubMed ID: 28158525 [TBL] [Abstract][Full Text] [Related]
11. Iterative sure independence screening EM-Bayesian LASSO algorithm for multi-locus genome-wide association studies. Tamba CL; Ni YL; Zhang YM PLoS Comput Biol; 2017 Jan; 13(1):e1005357. PubMed ID: 28141824 [TBL] [Abstract][Full Text] [Related]
12. Transformation of Summary Statistics from Linear Mixed Model Association on All-or-None Traits to Odds Ratio. Lloyd-Jones LR; Robinson MR; Yang J; Visscher PM Genetics; 2018 Apr; 208(4):1397-1408. PubMed ID: 29429966 [TBL] [Abstract][Full Text] [Related]
13. Matrix sketching framework for linear mixed models in association studies. Burch M; Bose A; Dexter G; Parida L; Drineas P Genome Res; 2024 Oct; 34(9):1304-1311. PubMed ID: 39231610 [TBL] [Abstract][Full Text] [Related]
14. FaST-LMM for Two-Way Epistasis Tests on High-Performance Clusters. Martínez H; Barrachina S; Castillo M; Quintana-OrtÍ ES; Rambla de Argila J; Farré X; Navarro A J Comput Biol; 2018 Aug; 25(8):862-870. PubMed ID: 30020811 [TBL] [Abstract][Full Text] [Related]
15. An efficient unified model for genome-wide association studies and genomic selection. Li H; Su G; Jiang L; Bao Z Genet Sel Evol; 2017 Aug; 49(1):64. PubMed ID: 28836943 [TBL] [Abstract][Full Text] [Related]
16. A SUPER powerful method for genome wide association study. Wang Q; Tian F; Pan Y; Buckler ES; Zhang Z PLoS One; 2014; 9(9):e107684. PubMed ID: 25247812 [TBL] [Abstract][Full Text] [Related]
17. Dissecting Complex Traits Using Omics Data: A Review on the Linear Mixed Models and Their Application in GWAS. Alamin M; Sultana MH; Lou X; Jin W; Xu H Plants (Basel); 2022 Nov; 11(23):. PubMed ID: 36501317 [TBL] [Abstract][Full Text] [Related]
18. Further improvements to linear mixed models for genome-wide association studies. Widmer C; Lippert C; Weissbrod O; Fusi N; Kadie C; Davidson R; Listgarten J; Heckerman D Sci Rep; 2014 Nov; 4():6874. PubMed ID: 25387525 [TBL] [Abstract][Full Text] [Related]
19. Eigen decomposition expedites longitudinal genome-wide association studies for milk production traits in Chinese Holstein. Ning C; Wang D; Zheng X; Zhang Q; Zhang S; Mrode R; Liu JF Genet Sel Evol; 2018 Mar; 50(1):12. PubMed ID: 29576014 [TBL] [Abstract][Full Text] [Related]
20. An assessment of the performance of the logistic mixed model for analyzing binary traits in maize and sorghum diversity panels. Shenstone E; Cooper J; Rice B; Bohn M; Jamann TM; Lipka AE PLoS One; 2018; 13(11):e0207752. PubMed ID: 30462727 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]