These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

216 related articles for article (PubMed ID: 31159278)

  • 41. Probiotic attributes and prevention of LPS-induced pro-inflammatory stress in RAW264.7 macrophages and human intestinal epithelial cell line (Caco-2) by newly isolated Weissella cibaria strains.
    Singh S; Bhatia R; Singh A; Singh P; Kaur R; Khare P; Purama RK; Boparai RK; Rishi P; Ambalam P; Bhadada SK; Bishnoi M; Kaur J; Kondepudi KK
    Food Funct; 2018 Feb; 9(2):1254-1264. PubMed ID: 29393319
    [TBL] [Abstract][Full Text] [Related]  

  • 42.
    Huang L; Cui K; Mao W; Du Y; Yao N; Li Z; Zhao H; Ma W
    Front Microbiol; 2020; 11():2039. PubMed ID: 33013748
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Safety assessment of the candidate oral probiotic Lactobacillus crispatus YIT 12319: Analysis of antibiotic resistance and virulence-associated genes.
    Terai T; Kato K; Ishikawa E; Nakao M; Ito M; Miyazaki K; Kushiro A; Imai S; Nomura Y; Hanada N; Okumura T
    Food Chem Toxicol; 2020 Jun; 140():111278. PubMed ID: 32209355
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Genomic-, phenotypic-, and toxicity-based safety assessment and probiotic potency of Bacillus coagulans IDCC 1201 isolated from green malt.
    Bang WY; Ban OH; Lee BS; Oh S; Park C; Park MK; Jung SK; Yang J; Jung YH
    J Ind Microbiol Biotechnol; 2021 Jul; 48(5-6):. PubMed ID: 33904924
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Potential probiotic of Lactobacillus strains isolated from the intestinal tracts of pigs and feces of dogs with antibacterial activity against multidrug-resistant pathogenic bacteria.
    Lin CF; Lin MY; Lin CN; Chiou MT; Chen JW; Yang KC; Wu MC
    Arch Microbiol; 2020 Sep; 202(7):1849-1860. PubMed ID: 32447432
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Phylogenetic Analyses of pheS, dnaA and atpA Genes for Identification of Weissella confusa and Weissella cibaria Isolated from a South African Sugarcane Processing Factory.
    Nel S; Davis SB; Endo A; Dicks LMT
    Curr Microbiol; 2019 Oct; 76(10):1138-1146. PubMed ID: 31338566
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Next-Generation Sequencing for Whole-Genome Characterization of
    Tenea GN; Hurtado P
    Front Microbiol; 2021; 12():675002. PubMed ID: 34163450
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Comparison of Temperature and Additives Affecting the Stability of the Probiotic Weissella cibaria.
    Kang MS; Kim YS; Lee HC; Lim HS; Oh JS
    Chonnam Med J; 2012 Dec; 48(3):159-63. PubMed ID: 23323221
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Probiotic potential of Weissella strains isolated from horse feces.
    Xia Y; Qin S; Shen Y
    Microb Pathog; 2019 Jul; 132():117-123. PubMed ID: 31009656
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The controversial nature of the Weissella genus: technological and functional aspects versus whole genome analysis-based pathogenic potential for their application in food and health.
    Abriouel H; Lerma LL; Casado Muñoz Mdel C; Montoro BP; Kabisch J; Pichner R; Cho GS; Neve H; Fusco V; Franz CM; Gálvez A; Benomar N
    Front Microbiol; 2015; 6():1197. PubMed ID: 26579103
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Genotypic characterization and safety assessment of lactic acid bacteria from indigenous African fermented food products.
    Adimpong DB; Nielsen DS; Sørensen KI; Derkx PM; Jespersen L
    BMC Microbiol; 2012 May; 12():75. PubMed ID: 22594449
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Safety demonstration of a microbial species for use in the food chain: Weissella confusa.
    Bourdichon F; Patrone V; Fontana A; Milani G; Morelli L
    Int J Food Microbiol; 2021 Feb; 339():109028. PubMed ID: 33352462
    [TBL] [Abstract][Full Text] [Related]  

  • 53.
    Liu X; Jiang N; Wang X; Yan H; Guan L; Kong L; Chen J; Zhang H; Ma H
    Foods; 2024 Apr; 13(7):. PubMed ID: 38611436
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Biotransformation of whey by Weissella cibaria suppresses 3T3-L1 adipocyte differentiation.
    Lee JS; Hyun IK; Seo HJ; Song D; Kim MY; Kang SS
    J Dairy Sci; 2021 Apr; 104(4):3876-3887. PubMed ID: 33612219
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Weissella: An Emerging Bacterium with Promising Health Benefits.
    Teixeira CG; Fusieger A; Milião GL; Martins E; Drider D; Nero LA; de Carvalho AF
    Probiotics Antimicrob Proteins; 2021 Aug; 13(4):915-925. PubMed ID: 33565028
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Predominance of
    Sánchez J; Vegas C; Zavaleta AI; Esteve-Zarzoso B
    Pol J Microbiol; 2019; 68(1):127-137. PubMed ID: 31050261
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Genome Sequence of Weissella cibaria KACC 11862.
    Kim DS; Choi SH; Kim DW; Nam SH; Kim RN; Kang A; Kim A; Park HS
    J Bacteriol; 2011 Feb; 193(3):797-8. PubMed ID: 21097615
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Genome analysis revealed a repertoire of oligosaccharide utilizing CAZymes in
    Sharma N; Gupta D; Park YS
    Food Sci Biotechnol; 2023 Mar; 32(4):553-564. PubMed ID: 36911327
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Complete Genome Sequence of
    Surachat K; Kantachote D; Wonglapsuwan M; Chukamnerd A; Deachamag P; Mittraparp-Arthorn P; Jeenkeawpiam K
    Front Microbiol; 2022; 13():826683. PubMed ID: 35663880
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Evaluation of exopolysaccharide producing Weissella cibaria MG1 strain for the production of sourdough from various flours.
    Wolter A; Hager AS; Zannini E; Galle S; Gänzle MG; Waters DM; Arendt EK
    Food Microbiol; 2014 Feb; 37():44-50. PubMed ID: 24230472
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.