These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 31159278)

  • 61. Metabolomics and gene-metabolite networks reveal the potential of Leuconostoc and Weissella strains as starter cultures in the manufacturing of bread without baker's yeast.
    Lopez CM; Rocchetti G; Fontana A; Lucini L; Rebecchi A
    Food Res Int; 2022 Dec; 162(Pt A):112023. PubMed ID: 36461307
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Anti-Inflammatory Potential of Probiotic Strain Weissella cibaria JW15 Isolated from Kimchi through Regulation of NF-κB and MAPKs Pathways in LPS-Induced RAW 264.7 Cells.
    Yu HS; Lee NK; Choi AJ; Choe JS; Bae CH; Paik HD
    J Microbiol Biotechnol; 2019 Jul; 29(7):1022-1032. PubMed ID: 31216608
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Inhibitory effect of Weissella cibaria isolates on the production of volatile sulphur compounds.
    Kang MS; Kim BG; Chung J; Lee HC; Oh JS
    J Clin Periodontol; 2006 Mar; 33(3):226-32. PubMed ID: 16489950
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Antibiotic Resistance of Coagulase-Negative Staphylococci and Lactic Acid Bacteria Isolated from Naturally Fermented Chinese Cured Beef.
    Wang J; Li M; Wang J; Liu M; Yang K; Zhang J; Fan M; Wei X
    J Food Prot; 2018 Dec; 81(12):2054-2063. PubMed ID: 30485765
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Immunomodulatory Potential of Weissella cibaria in Aged C57BL/6J Mice.
    Park HE; Kang KW; Kim BS; Lee SM; Lee WK
    J Microbiol Biotechnol; 2017 Dec; 27(12):2094-2103. PubMed ID: 29032650
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Evaluation of Enterococcus spp. from rainbow trout (Oncorhynchus mykiss, Walbaum), feed, and rearing environment against fish pathogens.
    Araújo C; Muñoz-Atienza E; Hernández PE; Herranz C; Cintas LM; Igrejas G; Poeta P
    Foodborne Pathog Dis; 2015 Apr; 12(4):311-22. PubMed ID: 25671551
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Characterization of Antibiotic Resistance Genes from Lactobacillus Isolated from Traditional Dairy Products.
    Guo H; Pan L; Li L; Lu J; Kwok L; Menghe B; Zhang H; Zhang W
    J Food Sci; 2017 Mar; 82(3):724-730. PubMed ID: 28182844
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Characterization of dextran-producing Weissella strains isolated from sourdoughs and evidence of constitutive dextransucrase expression.
    Bounaix MS; Robert H; Gabriel V; Morel S; Remaud-Siméon M; Gabriel B; Fontagné-Faucher C
    FEMS Microbiol Lett; 2010 Oct; 311(1):18-26. PubMed ID: 20722740
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Newly isolated lactic acid bacteria with probiotic features for potential application in food industry.
    Divya JB; Varsha KK; Nampoothiri KM
    Appl Biochem Biotechnol; 2012 Jul; 167(5):1314-24. PubMed ID: 22350936
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Assessment of Antibiotic Susceptibility within Lactic Acid Bacteria and Coagulase-Negative Staphylococci Isolated from Hunan Smoked Pork, a Naturally Fermented Meat Product in China.
    Wang J; Wei X; Fan M
    J Food Sci; 2018 Jun; 83(6):1707-1715. PubMed ID: 29786847
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Screening of
    Wang W; Ma H; Yu H; Qin G; Tan Z; Wang Y; Pang H
    Molecules; 2020 Sep; 25(19):. PubMed ID: 33003556
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Characterization of antimicrobial resistance in lactobacilli and bifidobacteria used as probiotics or starter cultures based on integration of phenotypic and in silico data.
    Rozman V; Mohar Lorbeg P; Accetto T; Bogovič Matijašić B
    Int J Food Microbiol; 2020 Feb; 314():108388. PubMed ID: 31707173
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Safety assessment of Lactobacillus plantarum JDM1 based on the complete genome.
    Zhang ZY; Liu C; Zhu YZ; Wei YX; Tian F; Zhao GP; Guo XK
    Int J Food Microbiol; 2012 Feb; 153(1-2):166-70. PubMed ID: 22133564
    [TBL] [Abstract][Full Text] [Related]  

  • 74.
    Choi SI; You S; Kim S; Won G; Kang CH; Kim GH
    Food Nutr Res; 2021; 65():. PubMed ID: 34776827
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Genomic Insights of
    Ku HJ; Kim YT; Lee JH
    J Microbiol Biotechnol; 2017 May; 27(5):943-946. PubMed ID: 28274098
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Comparative genome analysis of Weissella ceti, an emerging pathogen of farm-raised rainbow trout.
    Figueiredo HC; Soares SC; Pereira FL; Dorella FA; Carvalho AF; Teixeira JP; Azevedo VA; Leal CA
    BMC Genomics; 2015 Dec; 16():1095. PubMed ID: 26694728
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Effect of Weissella cibaria isolates on the formation of Streptococcus mutans biofilm.
    Kang MS; Chung J; Kim SM; Yang KH; Oh JS
    Caries Res; 2006; 40(5):418-25. PubMed ID: 16946611
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Safety Evaluation of
    Choi IY; Kim J; Kim SH; Ban OH; Yang J; Park MK
    J Microbiol Biotechnol; 2021 Jul; 31(7):949-955. PubMed ID: 34024895
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Detection and Characterization of Weissellicin 110, a Bacteriocin Produced by
    Wu HC; Srionnual S; Yanagida F; Chen YS
    Iran J Biotechnol; 2015 Sep; 13(3):63-67. PubMed ID: 28959301
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Differentiation between
    Kim E; Yang SM; Jung DH; Kim HY
    Int J Mol Sci; 2023 Jul; 24(13):. PubMed ID: 37446188
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.