These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
196 related articles for article (PubMed ID: 31159280)
1. Effects of Silicone Oil Viscosity and Carbonyl Iron Particle Weight Fraction and Size on Yield Stress for Magnetorheological Grease Based on a New Preparation Technique. Wang K; Dong X; Li J; Shi K; Li K Materials (Basel); 2019 May; 12(11):. PubMed ID: 31159280 [TBL] [Abstract][Full Text] [Related]
2. A comparative work on the magnetic field-dependent properties of plate-like and spherical iron particle-based magnetorheological grease. Mohamad N; Ubaidillah ; Mazlan SA; Imaduddin F; Choi SB; Yazid IIM PLoS One; 2018; 13(4):e0191795. PubMed ID: 29630595 [TBL] [Abstract][Full Text] [Related]
3. An experimental study on the effects of temperature and magnetic field strength on the magnetorheological fluid stability and MR effect. Rabbani Y; Ashtiani M; Hashemabadi SH Soft Matter; 2015 Jun; 11(22):4453-60. PubMed ID: 25940850 [TBL] [Abstract][Full Text] [Related]
4. Effect of Magnetorheological Grease's Viscosity to the Torque Performance in Magnetorheological Brake. Abdul Kadir KA; Nazmi N; Mohamad N; Shabdin MK; Adiputra D; Mazlan SA; Nordin NA; Mohd Yusuf S; Ubaidillah Materials (Basel); 2022 Aug; 15(16):. PubMed ID: 36013852 [TBL] [Abstract][Full Text] [Related]
5. Rheological Properties and Stabilization of Magnetorheological Fluids in a Water-in-Oil Emulsion. Park JH; Chin BD; Park OO J Colloid Interface Sci; 2001 Aug; 240(1):349-354. PubMed ID: 11446818 [TBL] [Abstract][Full Text] [Related]
6. Quasi-Static Rheological Properties of Lithium-Based Magnetorheological Grease under Large Deformation. Wang H; Zhang G; Wang J Materials (Basel); 2019 Jul; 12(15):. PubMed ID: 31366140 [TBL] [Abstract][Full Text] [Related]
7. The Effect of Particle Shapes on the Field-Dependent Rheological Properties of Magnetorheological Greases. Mohamad N; ; Mazlan SA; Choi SB; Abdul Aziz SA; Sugimoto M Int J Mol Sci; 2019 Mar; 20(7):. PubMed ID: 30934679 [TBL] [Abstract][Full Text] [Related]
8. Rheological Performance of Magnetorheological Grease with Embedded Graphite Additives. Mohd Nasir NA; Nazmi N; Mohamad N; Ubaidillah U; Nordin NA; Mazlan SA; Abdul Aziz SA; Shabdin MK; Yunus NA Materials (Basel); 2021 Sep; 14(17):. PubMed ID: 34501180 [TBL] [Abstract][Full Text] [Related]
9. Effect of Sepiolite on the Field-Dependent Normal Force of Magnetorheological Grease. Du M; Wang H; Ye X; Qian K; Wang J Materials (Basel); 2023 Aug; 16(16):. PubMed ID: 37629918 [TBL] [Abstract][Full Text] [Related]
10. Influence of Magnetic Field and Temperature on Rheological Behavior of Magnetorheological Gel. Sun M; Li X; Zhou Z; Deng R; Chen X; Wang J; Mao R Materials (Basel); 2022 Nov; 15(22):. PubMed ID: 36431554 [TBL] [Abstract][Full Text] [Related]
11. Two-dimensional Fe Wang G; Ma Y; Cui G; Li N; Dong X Soft Matter; 2018 Mar; 14(10):1917-1924. PubMed ID: 29468233 [TBL] [Abstract][Full Text] [Related]
12. Material Characterization of Magnetorheological Elastomers with Corroded Carbonyl Iron Particles: Morphological Images and Field-dependent Viscoelastic Properties. Aziz SABA; Mazlan SA; Nordin NA; Abd Rahman NAN; Ubaidillah U; Choi SB; Mohamad N Int J Mol Sci; 2019 Jul; 20(13):. PubMed ID: 31284462 [TBL] [Abstract][Full Text] [Related]
13. Investigation of the Effect of Carbonyl Iron Micro-Particles on the Mechanical and Rheological Properties of Isotropic and Anisotropic MREs: Constitutive Magneto-Mechanical Material Model. Soria-Hernández CG; Palacios-Pineda LM; Elías-Zúñiga A; Perales-Martínez IA; Martínez-Romero O Polymers (Basel); 2019 Oct; 11(10):. PubMed ID: 31627370 [TBL] [Abstract][Full Text] [Related]
14. Gelatine-Coated Carbonyl Iron Particles and Their Utilization in Magnetorheological Suspensions. Plachy T; Rohrer P; Holcapkova P Materials (Basel); 2021 May; 14(10):. PubMed ID: 34066006 [TBL] [Abstract][Full Text] [Related]
15. Microstructure Simulation and Constitutive Modelling of Magnetorheological Fluids Based on the Hexagonal Close-packed Structure. Zhang J; Song W; Peng Z; Gao J; Wang N; Choi SB; Kim GW Materials (Basel); 2020 Apr; 13(7):. PubMed ID: 32260188 [TBL] [Abstract][Full Text] [Related]
16. Field-Dependent Rheological Properties of Magnetorheological Elastomer with Fountain-Like Particle Chain Alignment. Fakhree MAM; Nordin NA; Nazmi N; Mazlan SA; Aziz SAA; Ubaidillah U; Ahmad F; Choi SB Micromachines (Basel); 2022 Mar; 13(4):. PubMed ID: 35457797 [TBL] [Abstract][Full Text] [Related]
17. The Synthesis of Organic Oils Blended Magnetorheological Fluids with the Field-Dependent Material Characterization. Jinaga R; Jagadeesha T; Kolekar S; Choi SB Int J Mol Sci; 2019 Nov; 20(22):. PubMed ID: 31744101 [TBL] [Abstract][Full Text] [Related]
18. From Brush to Dendritic Structure: Tool for Tunable Interfacial Compatibility between the Iron-Based Particles and Silicone Oil in Magnetorheological Fluids. Kozłowski S; Osička J; Ilcikova M; Galeziewska M; Mrlik M; Pietrasik J Langmuir; 2024 Mar; 40(10):5297-5305. PubMed ID: 38430189 [TBL] [Abstract][Full Text] [Related]
19. Normal force of lithium-based magnetorheological grease under quasi-static shear with large deformation. Wang H; Zhang G; Wang J RSC Adv; 2019 Aug; 9(47):27167-27175. PubMed ID: 35529224 [TBL] [Abstract][Full Text] [Related]