BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

197 related articles for article (PubMed ID: 31159340)

  • 1. A CMOS Compatible Pyroelectric Mid-Infrared Detector Based on Aluminium Nitride.
    Ranacher C; Consani C; Tortschanoff A; Rauter L; Holzmann D; Fleury C; Stocker G; Fant A; Schaunig H; Irsigler P; Grille T; Jakoby B
    Sensors (Basel); 2019 May; 19(11):. PubMed ID: 31159340
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Miniaturized CO
    Ng DKT; Xu L; Chen W; Wang H; Gu Z; Chia XX; Fu YH; Jaafar N; Ho CP; Zhang T; Zhang Q; Lee LYT
    ACS Sens; 2022 Aug; 7(8):2345-2357. PubMed ID: 35943904
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Infrared responsivity of a pyroelectric detector with a single-wall carbon nanotube coating.
    Theocharous E; Engtrakul C; Dillon AC; Lehman J
    Appl Opt; 2008 Aug; 47(22):3999-4003. PubMed ID: 18670553
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of a pyroelectric detector with a carbon multiwalled nanotube black coating in the infrared.
    Theocharous E; Deshpande R; Dillon AC; Lehman J
    Appl Opt; 2006 Feb; 45(6):1093-7. PubMed ID: 16523768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrafast pyroelectric photodetection with on-chip spectral filters.
    Stewart JW; Vella JH; Li W; Fan S; Mikkelsen MH
    Nat Mater; 2020 Feb; 19(2):158-162. PubMed ID: 31768011
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Split ring hole metamaterial-enhanced pyroelectric detector for efficient multi-narrowband terahertz detection.
    Wang Y; Jing W; Gao L; Han F; Meng Q; Yang C; Zhao L; Jiang Z; Chan CH
    Opt Express; 2024 May; 32(11):19779-19791. PubMed ID: 38859104
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Microbolometer System for Radiation Detection in the THz Frequency Range with a Resonating Cavity Fabricated in the CMOS Technology.
    Sesek A; Zemva A; Trontelj J
    Recent Pat Nanotechnol; 2018 Feb; 12(1):34-44. PubMed ID: 28675992
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A MEMS-Based Quad-Wavelength Hybrid Plasmonic-Pyroelectric Infrared Detector.
    Doan AT; Yokoyama T; Dao TD; Ishii S; Ohi A; Nabatame T; Wada Y; Maruyama S; Nagao T
    Micromachines (Basel); 2019 Jun; 10(6):. PubMed ID: 31234295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental setup to measure thermal waves generated by X-ray absorption using pyroelectric sensor.
    Kane SR; Sinha AK; Singh AK; Kumar S
    Rev Sci Instrum; 2019 Mar; 90(3):033301. PubMed ID: 30927779
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Highly Selective CMOS-Compatible Mid-Infrared Thermal Emitter/Detector Slab Design Using Optical Tamm-States.
    Pühringer G; Jakoby B
    Materials (Basel); 2019 Mar; 12(6):. PubMed ID: 30897809
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrahigh Photogain Short-Wave Infrared Detectors Enabled by Integrating Graphene and Hyperdoped Silicon.
    Jiang H; Wang M; Fu J; Li Z; Shaikh MS; Li Y; Nie C; Sun F; Tang L; Yang J; Qin T; Zhou D; Shen J; Sun J; Feng S; Zhu M; Kentsch U; Zhou S; Shi H; Wei X
    ACS Nano; 2022 Aug; 16(8):12777-12785. PubMed ID: 35900823
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Soliton formation and spectral translation into visible on CMOS-compatible 4H-silicon-carbide-on-insulator platform.
    Wang C; Li J; Yi A; Fang Z; Zhou L; Wang Z; Niu R; Chen Y; Zhang J; Cheng Y; Liu J; Dong CH; Ou X
    Light Sci Appl; 2022 Dec; 11(1):341. PubMed ID: 36473842
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assembly and evaluation of a pyroelectric detector bonded to vertically aligned multiwalled carbon nanotubes over thin silicon.
    Theocharous E; Theocharous SP; Lehman JH
    Appl Opt; 2013 Nov; 52(33):8054-9. PubMed ID: 24513757
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Thermal Detector Arrays for Off-Axis THz Holography and Real-Time THz Imaging.
    Hack E; Valzania L; Gäumann G; Shalaby M; Hauri CP; Zolliker P
    Sensors (Basel); 2016 Feb; 16(2):221. PubMed ID: 26861341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Midwave thermal infrared detection using semiconductor selective absorption.
    Shea RP; Gawarikar AS; Talghader JJ
    Opt Express; 2010 Oct; 18(22):22833-41. PubMed ID: 21164622
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Te
    Fu L; He Y; Zheng J; Hu Y; Xue J; Li S; Ge C; Yang X; Peng M; Li K; Zeng X; Wei J; Xue DJ; Song H; Chen C; Tang J
    Adv Mater; 2023 Jun; 35(24):e2211522. PubMed ID: 36972712
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermal noise in mid-infrared broadband upconversion detectors.
    Barh A; Tidemand-Lichtenberg P; Pedersen C
    Opt Express; 2018 Feb; 26(3):3249-3259. PubMed ID: 29401855
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Wideband infrared trap detector based upon doped silicon photocurrent devices.
    Woods SI; Proctor JE; Jung TM; Carter AC; Neira J; Defibaugh DR
    Appl Opt; 2018 Jun; 57(18):D82-D89. PubMed ID: 30117943
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noise sources and improved performance of a mid-wave infrared uncooled silicon carbide optical photodetector.
    Lim G; Manzur T; Kar A
    Appl Opt; 2014 Dec; 53(36):8410-23. PubMed ID: 25608189
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mid-infrared Laser-Induced Fluorescence with Nanosecond Time Resolution Using a Superconducting Nanowire Single-Photon Detector: New Technology for Molecular Science.
    Chen L; Schwarzer D; Verma VB; Stevens MJ; Marsili F; Mirin RP; Nam SW; Wodtke AM
    Acc Chem Res; 2017 Jun; 50(6):1400-1409. PubMed ID: 28573866
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.