These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

136 related articles for article (PubMed ID: 31159341)

  • 1. Effects of Submaximal Performances on Critical Speed and Power: Uses of an Arbitrary-Unit Method with Different Protocols.
    Vandewalle H
    Sports (Basel); 2019 May; 7(6):. PubMed ID: 31159341
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling of Running Performances in Humans: Comparison of Power Laws and Critical Speed.
    Zinoubi B; Vandewalle H; Driss T
    J Strength Cond Res; 2017 Jul; 31(7):1859-1867. PubMed ID: 27442329
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ratings of perceived exertion (RPE) during cycling exercises at constant power output.
    Garcin M; Vautier JF; Vandewalle H; Wolff M; Monod H
    Ergonomics; 1998 Oct; 41(10):1500-9. PubMed ID: 9802254
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of protocol on determination of velocity at VO2 max and on its time to exhaustion.
    Billat VL; Hill DW; Pinoteau J; Petit B; Koralsztein JP
    Arch Physiol Biochem; 1996; 104(3):313-21. PubMed ID: 8793023
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ratings of perceived exertion (RPE) as an index of aerobic endurance during local and general exercises.
    Garcin M; Vautier JF; Vandewalle H; Monod H
    Ergonomics; 1998 Aug; 41(8):1105-14. PubMed ID: 9715670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel submaximal cycle test to monitor fatigue and predict cycling performance.
    Lamberts RP; Swart J; Noakes TD; Lambert MI
    Br J Sports Med; 2011 Aug; 45(10):797-804. PubMed ID: 19622525
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Work-exhaustion time relationships and the critical power concept. A critical review.
    Vandewalle H; Vautier JF; Kachouri M; Lechevalier JM; Monod H
    J Sports Med Phys Fitness; 1997 Jun; 37(2):89-102. PubMed ID: 9239986
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Times to exhaustion at 90, 100 and 105% of velocity at VO2 max (maximal aerobic speed) and critical speed in elite long-distance runners.
    Billat V; Renoux JC; Pinoteau J; Petit B; Koralsztein JP
    Arch Physiol Biochem; 1995 May; 103(2):129-35. PubMed ID: 9338084
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Is the exhaustion time at maximal aerobic speed an index of aerobic endurance?
    Kachouri M; Vandewalle H; Huet M; Thomaïdis M; Jousselin E; Monod H
    Arch Physiol Biochem; 1996; 104(3):330-6. PubMed ID: 8793025
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Experimental validation of the 3-parameter critical power model in cycling.
    Vinetti G; Taboni A; Bruseghini P; Camelio S; D'Elia M; Fagoni N; Moia C; Ferretti G
    Eur J Appl Physiol; 2019 Apr; 119(4):941-949. PubMed ID: 30694386
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reliability of time to exhaustion analyzed with critical-power and log-log modeling.
    Hinckson EA; Hopkins WG
    Med Sci Sports Exerc; 2005 Apr; 37(4):696-701. PubMed ID: 15809572
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The relationship between critical power and running performance.
    Kolbe T; Dennis SC; Selley E; Noakes TD; Lambert MI
    J Sports Sci; 1995 Jun; 13(3):265-9. PubMed ID: 7563294
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Relationships between field performance tests in high-level soccer players.
    Ingebrigtsen J; Brochmann M; Castagna C; Bradley PS; Ade J; Krustrup P; Holtermann A
    J Strength Cond Res; 2014 Apr; 28(4):942-9. PubMed ID: 23838979
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparison of time to exhaustion at VO2 max in élite cyclists, kayak paddlers, swimmers and runners.
    Billat V; Faina M; Sardella F; Marini C; Fanton F; Lupo S; Faccini P; de Angelis M; Koralsztein JP; Dalmonte A
    Ergonomics; 1996 Feb; 39(2):267-77. PubMed ID: 8851531
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Energetics of kayaking at submaximal and maximal speeds.
    Zamparo P; Capelli C; Guerrini G
    Eur J Appl Physiol Occup Physiol; 1999; 80(6):542-8. PubMed ID: 10541920
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Critical power as an endurance index.
    Vautier JF; Vandewalle H; Arabi H; Monod H
    Appl Ergon; 1995 Apr; 26(2):117-21. PubMed ID: 15677008
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Relation between endurance time and maximal oxygen consumption during supramaximal running].
    Camus G; Juchmes J; Thys H; Fossion A
    J Physiol (Paris); 1988; 83(1):26-31. PubMed ID: 3183977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Modelling of Running Performances: Comparisons of Power-Law, Hyperbolic, Logarithmic, and Exponential Models in Elite Endurance Runners.
    Vandewalle H
    Biomed Res Int; 2018; 2018():8203062. PubMed ID: 30402494
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of work-matched supramaximal intermittent vs. submaximal constant-workload warm-up on all-out effort power output at the end of 2 minutes of maximal cycling.
    Fujii N; Hara H; Enomoto Y; Tanigawa S; Nishiyasu T
    Eur J Sport Sci; 2019 Apr; 19(3):336-344. PubMed ID: 30086683
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Critical velocity of continuous and intermittent running exercise. An example of the limits of the critical power concept.
    Kachouri M; Vandewalle H; Billat V; Huet M; Thomaïdis M; Jousselin E; Monod H
    Eur J Appl Physiol Occup Physiol; 1996; 73(5):484-7. PubMed ID: 8803511
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.