BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 31159367)

  • 1. Exploring
    Engleder M; Müller M; Kaluzna I; Mink D; Schürmann M; Leitner E; Pichler H; Emmerstorfer-Augustin A
    Molecules; 2019 Jun; 24(11):. PubMed ID: 31159367
    [TBL] [Abstract][Full Text] [Related]  

  • 2. X-ray structure of linalool dehydratase/isomerase from Castellaniella defragrans reveals enzymatic alkene synthesis.
    Weidenweber S; Marmulla R; Ermler U; Harder J
    FEBS Lett; 2016 May; 590(9):1375-83. PubMed ID: 27062179
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protonation state and fine structure of the active site determine the reactivity of dehydratase: hydration and isomerization of β-myrcene catalyzed by linalool dehydratase/isomerase from Castellaniella defragrans.
    Ling B; Wang X; Su H; Liu R; Liu Y
    Phys Chem Chem Phys; 2018 Jun; 20(25):17342-17352. PubMed ID: 29904766
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Physiology of deletion mutants in the anaerobic β-myrcene degradation pathway in Castellaniella defragrans.
    Lüddeke F; Dikfidan A; Harder J
    BMC Microbiol; 2012 Sep; 12():192. PubMed ID: 22947208
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enantiospecific (S)-(+)-linalool formation from beta-myrcene by linalool dehydratase-isomerase.
    Lüddeke F; Harder J
    Z Naturforsch C J Biosci; 2011; 66(7-8):409-12. PubMed ID: 21950166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linalool dehydratase-isomerase, a bifunctional enzyme in the anaerobic degradation of monoterpenes.
    Brodkorb D; Gottschall M; Marmulla R; Lüddeke F; Harder J
    J Biol Chem; 2010 Oct; 285(40):30436-42. PubMed ID: 20663876
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Linalool isomerase, a membrane-anchored enzyme in the anaerobic monoterpene degradation in Thauera linaloolentis 47Lol.
    Marmulla R; Šafarić B; Markert S; Schweder T; Harder J
    BMC Biochem; 2016 Mar; 17():6. PubMed ID: 26979141
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural and functional insights into asymmetric enzymatic dehydration of alkenols.
    Nestl BM; Geinitz C; Popa S; Rizek S; Haselbeck RJ; Stephen R; Noble MA; Fischer MP; Ralph EC; Hau HT; Man H; Omar M; Turkenburg JP; van Dien S; Culler SJ; Grogan G; Hauer B
    Nat Chem Biol; 2017 Mar; 13(3):275-281. PubMed ID: 28068311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficient myrcene production using linalool dehydratase isomerase and rational biochemical process in Escherichia coli.
    Wang X; Wang J; Zhang X; Zhang J; Zhou Y; Wang F; Li X
    J Biotechnol; 2023 Jul; 371-372():33-40. PubMed ID: 37285942
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The oxygen-independent metabolism of cyclic monoterpenes in Castellaniella defragrans 65Phen.
    Petasch J; Disch EM; Markert S; Becher D; Schweder T; Hüttel B; Reinhardt R; Harder J
    BMC Microbiol; 2014 Jun; 14():164. PubMed ID: 24952578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Geraniol and geranial dehydrogenases induced in anaerobic monoterpene degradation by Castellaniella defragrans.
    Lüddeke F; Wülfing A; Timke M; Germer F; Weber J; Dikfidan A; Rahnfeld T; Linder D; Meyerdierks A; Harder J
    Appl Environ Microbiol; 2012 Apr; 78(7):2128-36. PubMed ID: 22286981
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Potential enzymes involved in beer monoterpenoids transformation: structures, functions and challenges.
    Jiang Z; Xu C; Wang L; Hong K; Ma C; Lv C
    Crit Rev Food Sci Nutr; 2023; 63(14):2082-2092. PubMed ID: 34459289
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial Synthesis of Myrcene by Metabolically Engineered Escherichia coli.
    Kim EM; Eom JH; Um Y; Kim Y; Woo HM
    J Agric Food Chem; 2015 May; 63(18):4606-12. PubMed ID: 25909988
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Limonene dehydrogenase hydroxylates the allylic methyl group of cyclic monoterpenes in the anaerobic terpene degradation by
    Puentes-Cala E; Liebeke M; Markert S; Harder J
    J Biol Chem; 2018 Jun; 293(24):9520-9529. PubMed ID: 29716998
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Linalool and linalool nerolidol synthases in roses, several genes for little scent.
    Magnard JL; Bony AR; Bettini F; Campanaro A; Blerot B; Baudino S; Jullien F
    Plant Physiol Biochem; 2018 Jun; 127():74-87. PubMed ID: 29550664
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A domain swapping approach to elucidate differential regiospecific hydroxylation by geraniol and linalool synthases from perilla.
    Sato-Masumoto N; Ito M
    Phytochemistry; 2014 Jun; 102():46-54. PubMed ID: 24725978
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the current role of hydratases in biocatalysis.
    Engleder M; Pichler H
    Appl Microbiol Biotechnol; 2018 Jul; 102(14):5841-5858. PubMed ID: 29785499
    [TBL] [Abstract][Full Text] [Related]  

  • 18. (E)-beta-ocimene and myrcene synthase genes of floral scent biosynthesis in snapdragon: function and expression of three terpene synthase genes of a new terpene synthase subfamily.
    Dudareva N; Martin D; Kish CM; Kolosova N; Gorenstein N; Fäldt J; Miller B; Bohlmann J
    Plant Cell; 2003 May; 15(5):1227-41. PubMed ID: 12724546
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An RND transporter in the monoterpene metabolism of Castellaniella defragrans.
    Puentes-Cala E; Harder J
    Biodegradation; 2019 Feb; 30(1):1-12. PubMed ID: 30334144
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular cloning and characterization of a new linalool synthase.
    Crowell AL; Williams DC; Davis EM; Wildung MR; Croteau R
    Arch Biochem Biophys; 2002 Sep; 405(1):112-21. PubMed ID: 12176064
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.