These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. Sirt1 and Parp1 as epigenome safeguards and microRNAs as SASP-associated signals, in cellular senescence and aging. Hekmatimoghaddam S; Dehghani Firoozabadi A; Zare-Khormizi MR; Pourrajab F Ageing Res Rev; 2017 Nov; 40():120-141. PubMed ID: 28993289 [TBL] [Abstract][Full Text] [Related]
25. The role dietary of bioactive compounds on the regulation of histone acetylases and deacetylases: a review. Vahid F; Zand H; Nosrat-Mirshekarlou E; Najafi R; Hekmatdoost A Gene; 2015 May; 562(1):8-15. PubMed ID: 25701602 [TBL] [Abstract][Full Text] [Related]
26. Role of the Epigenome in Heart Failure. Papait R; Serio S; Condorelli G Physiol Rev; 2020 Oct; 100(4):1753-1777. PubMed ID: 32326823 [TBL] [Abstract][Full Text] [Related]
27. Stem Cell Depletion by Global Disorganization of the H3K9me3 Epigenetic Marker in Aging. Mendelsohn AR; Larrick JW Rejuvenation Res; 2015 Aug; 18(4):371-5. PubMed ID: 26160351 [TBL] [Abstract][Full Text] [Related]
28. Metabolic regulation of the plant epigenome. Lu Y; Bu Q; Chuan M; Cui X; Zhao Y; Zhou DX Plant J; 2023 Jun; 114(5):1001-1013. PubMed ID: 36705504 [TBL] [Abstract][Full Text] [Related]
29. Diet-Microbiota Interactions Mediate Global Epigenetic Programming in Multiple Host Tissues. Krautkramer KA; Kreznar JH; Romano KA; Vivas EI; Barrett-Wilt GA; Rabaglia ME; Keller MP; Attie AD; Rey FE; Denu JM Mol Cell; 2016 Dec; 64(5):982-992. PubMed ID: 27889451 [TBL] [Abstract][Full Text] [Related]
31. Epigenetics recording varied environment and complex cell events represents the origin of cellular aging. Guo XJ; Yang D; Zhang XY J Zhejiang Univ Sci B; 2019 Jul; 20(7):550-562. PubMed ID: 31168969 [TBL] [Abstract][Full Text] [Related]
32. Epigenome mapping highlights chromatin-mediated gene regulation in the protozoan parasite Trichomonas vaginalis. Song MJ; Kim M; Choi Y; Yi MH; Kim J; Park SJ; Yong TS; Kim HP Sci Rep; 2017 Mar; 7():45365. PubMed ID: 28345651 [TBL] [Abstract][Full Text] [Related]
33. Mitochondrion at the Crossroad Between Nutrients and Epigenome. Taormina G; Russo A; Latteri MA; Mirisola MG Front Endocrinol (Lausanne); 2019; 10():673. PubMed ID: 31636605 [TBL] [Abstract][Full Text] [Related]
34. Epigenetic tête-à-tête: the bilateral relationship between chromatin modifications and DNA methylation. D'Alessio AC; Szyf M Biochem Cell Biol; 2006 Aug; 84(4):463-76. PubMed ID: 16936820 [TBL] [Abstract][Full Text] [Related]
35. The coupling of epigenome replication with DNA replication. Liu Q; Gong Z Curr Opin Plant Biol; 2011 Apr; 14(2):187-94. PubMed ID: 21233006 [TBL] [Abstract][Full Text] [Related]
37. DNA methylation dynamics in aging: how far are we from understanding the mechanisms? Ciccarone F; Tagliatesta S; Caiafa P; Zampieri M Mech Ageing Dev; 2018 Sep; 174():3-17. PubMed ID: 29268958 [TBL] [Abstract][Full Text] [Related]
39. Relationship between epigenetic regulation, dietary habits, and the developmental origins of health and disease theory. Mochizuki K; Hariya N; Honma K; Goda T Congenit Anom (Kyoto); 2017 Nov; 57(6):184-190. PubMed ID: 28169463 [TBL] [Abstract][Full Text] [Related]
40. Epigenetic clock analyses of cellular senescence and ageing. Lowe D; Horvath S; Raj K Oncotarget; 2016 Feb; 7(8):8524-31. PubMed ID: 26885756 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]