These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

298 related articles for article (PubMed ID: 311594)

  • 1. [The electroretinogram and the visual evoked potential in normal and glaucomatous eyes (author's transl)].
    Bartl G
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1978 Sep; 207(4):243-69. PubMed ID: 311594
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of visual field changes and ocular hypertension on the visual evoked potential.
    Bartl G
    Ann N Y Acad Sci; 1982; 388():227-42. PubMed ID: 6953870
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [The electrophysiological behavior of normal and glaucomatous human eyes with short term intraocular pressure elevation (author's transl)].
    Bartl G; Benedikt O; Hiti H; Mandl H
    Albrecht Von Graefes Arch Klin Exp Ophthalmol; 1975 Jun; 195(3):201-6. PubMed ID: 1080967
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Temporary elevation of the intraocular pressure by cauterization of vortex and episcleral veins in rats causes functional deficits in the retina and optic nerve.
    Grozdanic SD; Betts DM; Sakaguchi DS; Kwon YH; Kardon RH; Sonea IM
    Exp Eye Res; 2003 Jul; 77(1):27-33. PubMed ID: 12823985
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pattern-reversal electroretinograms from normotensive, hypertensive and glaucomatous eyes.
    Wanger P; Persson HE
    Ophthalmologica; 1987; 195(4):205-8. PubMed ID: 3431818
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Functional evaluation of retina and optic nerve in the rat model of chronic ocular hypertension.
    Grozdanic SD; Kwon YH; Sakaguchi DS; Kardon RH; Sonea IM
    Exp Eye Res; 2004 Jul; 79(1):75-83. PubMed ID: 15183102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The gradient of retinal functional changes during acute intraocular pressure elevation.
    Bui BV; Edmunds B; Cioffi GA; Fortune B
    Invest Ophthalmol Vis Sci; 2005 Jan; 46(1):202-13. PubMed ID: 15623775
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Strain Specific Responses in a Microbead Rat Model of Experimental Glaucoma.
    Eastlake K; Jayaram H; Luis J; Hayes M; Khaw PT; Limb GA
    Curr Eye Res; 2021 Mar; 46(3):387-397. PubMed ID: 32842792
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multivariate approach for quantification of morphologic and functional damage in glaucoma.
    Martus P; Jünemann A; Wisse M; Budde WM; Horn F; Korth M; Jonas JB
    Invest Ophthalmol Vis Sci; 2000 Apr; 41(5):1099-110. PubMed ID: 10752947
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Restoration of retinal ganglion cell function in early glaucoma after intraocular pressure reduction: a pilot study.
    Ventura LM; Porciatti V
    Ophthalmology; 2005 Jan; 112(1):20-7. PubMed ID: 15629815
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Bivalent glaucoma therapy with pilocarpine and adrenaline - advantages of the combination piladren (author's transl)].
    Unterkircher K
    Klin Monbl Augenheilkd; 1976 Oct; 169(4):534-7. PubMed ID: 792560
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Intraocular pressure lowering is associated with an increase in the photopic negative response (PhNR) amplitude in glaucoma and ocular hypertensive eyes.
    Niyadurupola N; Luu CD; Nguyen DQ; Geddes K; Tan GX; Wong CC; Tran T; Coote MA; Crowston JG
    Invest Ophthalmol Vis Sci; 2013 Mar; 54(3):1913-9. PubMed ID: 23385794
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selective ganglion cell functional loss in rats with experimental glaucoma.
    Fortune B; Bui BV; Morrison JC; Johnson EC; Dong J; Cepurna WO; Jia L; Barber S; Cioffi GA
    Invest Ophthalmol Vis Sci; 2004 Jun; 45(6):1854-62. PubMed ID: 15161850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electroretinogram and visual-evoked potential assessment of retinal and central visual function in a rat ocular hypertension model of glaucoma.
    Georgiou AL; Guo L; Francesca Cordeiro M; Salt TE
    Curr Eye Res; 2014 May; 39(5):472-86. PubMed ID: 24215221
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pattern-evoked potentials and optic nerve fiber loss in monocular laser-induced glaucoma.
    Johnson MA; Drum BA; Quigley HA; Sanchez RM; Dunkelberger GR
    Invest Ophthalmol Vis Sci; 1989 May; 30(5):897-907. PubMed ID: 2722446
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Correlation between photopic negative response and retinal nerve fiber layer thickness and optic disc topography in glaucomatous eyes.
    Machida S; Gotoh Y; Toba Y; Ohtaki A; Kaneko M; Kurosaka D
    Invest Ophthalmol Vis Sci; 2008 May; 49(5):2201-7. PubMed ID: 18436853
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [New insights into the pathogenesis of glaucomatous optic neuropathy and refinement of the objective assessment of its functional damage].
    Nakamura M
    Nippon Ganka Gakkai Zasshi; 2012 Mar; 116(3):298-344; discussion 345-6. PubMed ID: 22568105
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Waveform changes of the first-order multifocal electroretinogram in patients with glaucoma.
    Hasegawa S; Takagi M; Usui T; Takada R; Abe H
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1597-603. PubMed ID: 10798681
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Long-term epinephrine therapy of ocular hypertension.
    Shin DH; Kolker AE; Kass MA; Kaback MB; Becker B
    Arch Ophthalmol; 1976 Dec; 94(12):2059-60. PubMed ID: 999550
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Photopic negative response of the human ERG: losses associated with glaucomatous damage.
    Colotto A; Falsini B; Salgarello T; Iarossi G; Galan ME; Scullica L
    Invest Ophthalmol Vis Sci; 2000 Jul; 41(8):2205-11. PubMed ID: 10892864
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.