These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 31159443)

  • 1. Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures.
    Laguna L; Álvarez MD; Simone E; Moreno-Arribas MV; Bartolomé B
    Foods; 2019 Jun; 8(6):. PubMed ID: 31159443
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploring mouthfeel in model wines: Sensory-to-instrumental approaches.
    Laguna L; Sarkar A; Bryant MG; Beadling AR; Bartolomé B; Victoria Moreno-Arribas M
    Food Res Int; 2017 Dec; 102():478-486. PubMed ID: 29195975
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rheological study of tannin and protein interactions based on model systems.
    Brossard N; Bordeu E; Ibáñez RA; Chen J; Osorio F
    J Texture Stud; 2020 Aug; 51(4):585-592. PubMed ID: 32110834
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An integrative salivary approach regarding palate cleansers in wine tasting.
    Taladrid D; Lorente L; Bartolomé B; Moreno-Arribas MV; Laguna L
    J Texture Stud; 2019 Feb; 50(1):75-82. PubMed ID: 30198574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Red Wine Dryness Perception Related to Physicochemistry.
    Watrelot AA; Heymann H; Waterhouse AL
    J Agric Food Chem; 2020 Mar; 68(10):2964-2972. PubMed ID: 30983339
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mouthfeel subqualities in wines: A current insight on sensory descriptors and physical-chemical markers.
    Paissoni MA; Motta G; Giacosa S; Rolle L; Gerbi V; Río Segade S
    Compr Rev Food Sci Food Saf; 2023 Jul; 22(4):3328-3365. PubMed ID: 37282812
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Different physicochemical interactions between varietal wines and human saliva: Correspondence with astringency.
    López-Solís R; Cortés-Araya K; Medel-Marabolí M; Obreque-Slier E
    Food Res Int; 2024 Feb; 178():113964. PubMed ID: 38309881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of condensed tannins addition on the astringency of red wines.
    Soares S; Sousa A; Mateus N; de Freitas V
    Chem Senses; 2012 Feb; 37(2):191-8. PubMed ID: 22086902
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Precipitation of salivary proteins after the interaction with wine: the effect of ethanol, pH, fructose, and mannoproteins.
    Rinaldi A; Gambuti A; Moio L
    J Food Sci; 2012 Apr; 77(4):C485-90. PubMed ID: 22515240
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Viscosity of liquid and semisolid materials: Establishing correlations between instrumental analyses and sensory characteristics.
    Conti-Silva AC; Ichiba AKT; Silveira ALD; Albano KM; Nicoletti VR
    J Texture Stud; 2018 Dec; 49(6):569-577. PubMed ID: 30156706
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of ethanol, glycerol, glucose and tartaric acid on the viscosity of model aqueous solutions and wine samples.
    Shehadeh A; Kechagia D; Evangelou A; Tataridis P; Shehadeh F
    Food Chem; 2019 Dec; 300():125191. PubMed ID: 31352290
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The mouthfeel of white wine.
    Gawel R; Smith PA; Cicerale S; Keast R
    Crit Rev Food Sci Nutr; 2018; 58(17):2939-2956. PubMed ID: 28678530
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Friction forces of saliva and red wine on hydrophobic and hydrophilic surfaces.
    Watrelot AA; Kuhl TL; Waterhouse AL
    Food Res Int; 2019 Feb; 116():1041-1046. PubMed ID: 30716887
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of the SPI (Saliva Precipitation Index) to the evaluation of red wine astringency.
    Rinaldi A; Gambuti A; Moio L
    Food Chem; 2012 Dec; 135(4):2498-504. PubMed ID: 22980834
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Paper chromatography approach for the assessment of interaction between red wine and whole saliva.
    Obreque-Slier E; Medel-Marabolí M; Maldonado-Maldonado E; López-Solís RO
    J Chromatogr A; 2023 Sep; 1707():464266. PubMed ID: 37572383
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Relationship between astringency and phenolic composition of commercial Uruguayan Tannat wines: Application of boosted regression trees.
    Vidal L; Antúnez L; Rodríguez-Haralambides A; Giménez A; Medina K; Boido E; Ares G
    Food Res Int; 2018 Oct; 112():25-37. PubMed ID: 30131135
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of a commercial tannin on the sensorial temporality of astringency.
    Medel-Marabolí M; Romero JL; Obreque-Slier E; Contreras A; Peña-Neira A
    Food Res Int; 2017 Dec; 102():341-347. PubMed ID: 29195957
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancement of both salivary protein-enological tannin interactions and astringency perception by ethanol.
    Obreque-Slíer E; Peña-Neira A; López-Solís R
    J Agric Food Chem; 2010 Mar; 58(6):3729-35. PubMed ID: 20158256
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of starch and saliva in tribology studies and the sensory perception of protein-added yogurts.
    Morell P; Chen J; Fiszman S
    Food Funct; 2017 Feb; 8(2):545-553. PubMed ID: 27220414
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Alcohol, Tannins, and Mannoprotein and their Interactions Influence the Sensory Properties of Selected Commercial Merlot Wines: A Preliminary Study.
    Diako C; McMahon K; Mattinson S; Evans M; Ross C
    J Food Sci; 2016 Aug; 81(8):S2039-48. PubMed ID: 27442722
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.