These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 3115963)

  • 21. Nickel affects activity more than expression of hydrogenase protein in Frankia.
    Mattsson U; Sellstedt A
    Curr Microbiol; 2002 Feb; 44(2):88-93. PubMed ID: 11815851
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Hydrogenases for biological hydrogen production.
    Kim DH; Kim MS
    Bioresour Technol; 2011 Sep; 102(18):8423-31. PubMed ID: 21435869
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Paramagnetic centers in the nickel-containing, deazaflavin-reducing hydrogenase from Methanobacterium thermoautotrophicum.
    Kojima N; Fox JA; Hausinger RP; Daniels L; Orme-Johnson WH; Walsh C
    Proc Natl Acad Sci U S A; 1983 Jan; 80(2):378-82. PubMed ID: 6300837
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Regulation of hydrogen utilisation in Rhizobium japonicum by cyclic AMP.
    Lim ST; Shanmugam KT
    Biochim Biophys Acta; 1979 May; 584(3):479-92. PubMed ID: 222344
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hydrogenase in Frankia KB5: expression of and relation to nitrogenase.
    Mattsson U; Sellstedt A
    Can J Microbiol; 2000 Dec; 46(12):1091-5. PubMed ID: 11142397
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nickel requirement for active hydrogenase formation in Alcaligenes eutrophus.
    Friedrich B; Heine E; Finck A; Friedrich CG
    J Bacteriol; 1981 Mar; 145(3):1144-9. PubMed ID: 6782086
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The effect of nickel on the growth, photosynthesis, and nitrogenase activity of Anabaena inaequalis.
    Stratton GW; Corke CT
    Can J Microbiol; 1979 Sep; 25(9):1094-9. PubMed ID: 120221
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Hydrogenases from methanogenic archaea, nickel, a novel cofactor, and H2 storage.
    Thauer RK; Kaster AK; Goenrich M; Schick M; Hiromoto T; Shima S
    Annu Rev Biochem; 2010; 79():507-36. PubMed ID: 20235826
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Expression of uptake hydrogenase and hydrogen oxidation during heterotrophic growth of Bradyrhizobium japonicum.
    van Berkum P
    J Bacteriol; 1987 Oct; 169(10):4565-9. PubMed ID: 3115959
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hydrogen metabolism of Azospirillum brasilense in nitrogen-free medium.
    Chan YK; Nelson LM; Knowles R
    Can J Microbiol; 1980 Sep; 26(9):1126-31. PubMed ID: 6257362
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hydrogen overproducing nitrogenases obtained by random mutagenesis and high-throughput screening.
    Barahona E; Jiménez-Vicente E; Rubio LM
    Sci Rep; 2016 Dec; 6():38291. PubMed ID: 27910898
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The three classes of hydrogenases from sulfate-reducing bacteria of the genus Desulfovibrio.
    Fauque G; Peck HD; Moura JJ; Huynh BH; Berlier Y; DerVartanian DV; Teixeira M; Przybyla AE; Lespinat PA; Moura I
    FEMS Microbiol Rev; 1988 Dec; 4(4):299-344. PubMed ID: 3078655
    [TBL] [Abstract][Full Text] [Related]  

  • 33. SlyD-dependent nickel delivery limits maturation of [NiFe]-hydrogenases in late-stationary phase Escherichia coli cells.
    Pinske C; Sargent F; Sawers RG
    Metallomics; 2015 Apr; 7(4):683-90. PubMed ID: 25620052
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Oxidation of aromatic alcohols by purified methanol dehydrogenase from Methylosinus trichosporium.
    Mountfort DO
    J Bacteriol; 1990 Jul; 172(7):3690-4. PubMed ID: 2193913
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Increase of nitrogenase activity in the blue-green alga Nostoc muscorum (Cyanobacterium).
    Scherer S; Kerfin W; Böger P
    J Bacteriol; 1980 Dec; 144(3):1017-23. PubMed ID: 6777364
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Hydrogen-mediated enhancement of hydrogenase expression in Azotobacter vinelandii.
    Prosser J; Graham L; Maier RJ
    J Bacteriol; 1988 Apr; 170(4):1990-3. PubMed ID: 3280556
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Batch cultivation of Methylosinus trichosporium OB3B: IV. Production of hydrogen-driven soluble or particulate methane monooxygenase activity.
    Shah NN; Hanna ML; Jackson KJ; Taylor RT
    Biotechnol Bioeng; 1995 Feb; 45(3):229-38. PubMed ID: 18623142
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cultivation of Methylosinus trichosporium OB3b: III. production of particulate methane monooxygenase in continuous culture.
    Shah NN; Park S; Taylor RT; Droege MW
    Biotechnol Bioeng; 1992 Sep; 40(6):705-12. PubMed ID: 18601170
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Effect of carbon and nitrogen sources on photo-fermentative H2 production associated with nitrogenase, uptake hydrogenase activity, and PHB accumulation in Rhodobacter sphaeroides KD131.
    Kim MS; Kim DH; Cha J; Lee JK
    Bioresour Technol; 2012 Jul; 116():179-83. PubMed ID: 22609673
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Energy-converting [NiFe] hydrogenases: more than just H2 activation.
    Hedderich R; Forzi L
    J Mol Microbiol Biotechnol; 2005; 10(2-4):92-104. PubMed ID: 16645307
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.