These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
138 related articles for article (PubMed ID: 31159658)
1. Exploring the binding mechanism between methylene blue and ovalbumin using spectroscopic analyses and computational simulations. Manivel P; Parthiban M; Ilanchelian M J Biomol Struct Dyn; 2020 Apr; 38(6):1838-1847. PubMed ID: 31159658 [TBL] [Abstract][Full Text] [Related]
2. Investigation into the site-specific binding interactions between chlorogenic acid and ovalbumin using multi-spectroscopic and in silico simulation studies. Perumal M; Marimuthu P; Chen X J Biomol Struct Dyn; 2022 Sep; 40(14):6619-6633. PubMed ID: 33627053 [TBL] [Abstract][Full Text] [Related]
3. Study of interaction of methylene blue with DNA and albumin. Vardevanyan PO; Antonyan AP; Parsadanyan MA; Shahinyan MA; Petrosyan NH J Biomol Struct Dyn; 2022 Oct; 40(17):7779-7785. PubMed ID: 33729082 [TBL] [Abstract][Full Text] [Related]
4. Exploring the interaction mechanism of dietary protein ovalbumin and folic acid: A combination research of molecular simulation technology and multispectroscopy. Cen C; Chen J; Wang W; Zhang J; Yang X; Fu L; Wang Y Food Chem; 2022 Aug; 385():132536. PubMed ID: 35278738 [TBL] [Abstract][Full Text] [Related]
5. Interaction between pH-shifted ovalbumin and insoluble neohesperidin: Experimental and binding mechanism studies. Xia N; Wang C; Zhu S Food Chem; 2022 Oct; 390():133104. PubMed ID: 35561507 [TBL] [Abstract][Full Text] [Related]
6. Exploring the structural basis of conformational alterations of myoglobin in the presence of spermine through computational modeling, molecular dynamics simulations, and spectroscopy methods. Eslami-Farsani R; Farhadian S; Shareghi B J Biomol Struct Dyn; 2022 May; 40(8):3581-3594. PubMed ID: 33308044 [TBL] [Abstract][Full Text] [Related]
7. Multispectroscopic and Computational Investigations on the Binding Mechanism of Dicaffeoylquinic Acids with Ovalbumin. Manivel P; Marimuthu P; Yu S; Chen X J Chem Inf Model; 2022 Dec; 62(23):6133-6147. PubMed ID: 36398926 [TBL] [Abstract][Full Text] [Related]
8. Comprehensive insight into the molecular interaction of an anticancer drug-ifosfamide with human alpha-2-macroglobulin: biophysical and Zia MK; Siddiqui T; Ahsan H; Khan FH J Biomol Struct Dyn; 2022 Jun; 40(9):3907-3916. PubMed ID: 33267704 [TBL] [Abstract][Full Text] [Related]
9. Characterization of the binding between anti-tumor drug 5-fluorouracil and human alpha-2-macroglobulin: spectroscopic and molecular docking analyses. Zia MK; Siddiqui T; Ahsan H; Khan FH J Biomol Struct Dyn; 2022 Oct; 40(17):7949-7959. PubMed ID: 33798029 [TBL] [Abstract][Full Text] [Related]
10. Exploring the binding mechanism of ferulic acid and ovalbumin: insights from spectroscopy, molecular docking and dynamics simulation. Chen L; Zhu M; Hu X; Pan J; Zhang G J Sci Food Agric; 2022 Jul; 102(9):3835-3846. PubMed ID: 34927253 [TBL] [Abstract][Full Text] [Related]
11. Probing the interaction of thionine with human serum albumin by multispectroscopic studies and its in vitro cytotoxic activity toward MCF-7 breast cancer cells. Manivel P; Paulpandi M; Murugan K; Benelli G; Ilanchelian M J Biomol Struct Dyn; 2017 Nov; 35(14):3012-3031. PubMed ID: 27691050 [TBL] [Abstract][Full Text] [Related]
12. Binding Interaction of Coumarin Derivative Daphnetin with Ovalbumin: Molecular Insights into the Complexation Process and Effects of Metal Ions and pH in the Binding and Antifibrillation Studies. Nudrat S; Maity B; Quraishi S; Karankumar I; Kumari K; Jana M; Singha Roy A Mol Pharm; 2024 Sep; 21(9):4708-4725. PubMed ID: 39115967 [TBL] [Abstract][Full Text] [Related]
13. New insights into the binding interaction of food protein ovalbumin with malachite green dye by hybrid spectroscopic and molecular docking analysis. Rajamanikandan R; Selva Sharma A; Ilanchelian M J Biomol Struct Dyn; 2019 Oct; 37(16):4292-4300. PubMed ID: 30451583 [TBL] [Abstract][Full Text] [Related]
14. Exploring the combination characteristics of lumefantrine, an antimalarial drug and human serum albumin through spectroscopic and molecular docking studies. Musa KA; Ridzwan NFW; Mohamad SB; Tayyab S J Biomol Struct Dyn; 2021 Feb; 39(2):691-702. PubMed ID: 31913089 [TBL] [Abstract][Full Text] [Related]
15. Multispectroscopic insight, morphological analysis and molecular docking studies of Cu Yousuf I; Bashir M; Arjmand F; Tabassum S J Biomol Struct Dyn; 2019 Aug; 37(12):3290-3304. PubMed ID: 30124142 [TBL] [Abstract][Full Text] [Related]
16. Molecular interaction of cyanidin-3- Ma Z; Prasanna G; Jiang L; Jing P J Biomol Struct Dyn; 2020 Apr; 38(6):1858-1867. PubMed ID: 31084417 [TBL] [Abstract][Full Text] [Related]
17. Exploring the binding dynamics of etoricoxib with human hemoglobin: A spectroscopic, calorimetric, and molecular modeling approach. Seal P; Sikdar J; Ghosh N; Biswas P; Haldar R J Biomol Struct Dyn; 2019 Jul; 37(11):3018-3028. PubMed ID: 30080442 [TBL] [Abstract][Full Text] [Related]
18. Characterization of interactions between cromolyn sodium and bovine serum albumin by spectroscopic, calorimetric and computational methods. Yasmeen S; Riyazuddeen ; Khatun S; Abul Qais F J Biomol Struct Dyn; 2020 Feb; 38(3):722-732. PubMed ID: 30821650 [TBL] [Abstract][Full Text] [Related]
19. Interaction of phenazinium dyes with double-stranded poly(A): spectroscopy and isothermal titration calorimetry studies. Khan AY; Saha B; Kumar GS Spectrochim Acta A Mol Biomol Spectrosc; 2014 Oct; 131():615-24. PubMed ID: 24861262 [TBL] [Abstract][Full Text] [Related]
20. Spectroscopic profiling and computational study of the binding of tschimgine: A natural monoterpene derivative, with calf thymus DNA. Khajeh MA; Dehghan G; Dastmalchi S; Shaghaghi M; Iranshahi M Spectrochim Acta A Mol Biomol Spectrosc; 2018 Mar; 192():384-392. PubMed ID: 29195192 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]