BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 31159719)

  • 1. Application of high-throughput amplicon sequencing-based SSR genotyping in genetic background screening.
    Li T; Fang Z; Peng H; Zhou J; Liu P; Wang Y; Zhu W; Li L; Zhang Q; Chen L; Li L; Liu Z; Zhang W; Zhai W; Lu L; Gao L
    BMC Genomics; 2019 Jun; 20(1):444. PubMed ID: 31159719
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An accurate and efficient method for large-scale SSR genotyping and applications.
    Li L; Fang Z; Zhou J; Chen H; Hu Z; Gao L; Chen L; Ren S; Ma H; Lu L; Zhang W; Peng H
    Nucleic Acids Res; 2017 Jun; 45(10):e88. PubMed ID: 28184437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rapid generation of genetic diversity by multiplex CRISPR/Cas9 genome editing in rice.
    Shen L; Hua Y; Fu Y; Li J; Liu Q; Jiao X; Xin G; Wang J; Wang X; Yan C; Wang K
    Sci China Life Sci; 2017 May; 60(5):506-515. PubMed ID: 28349304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. High-throughput detection and screening of plants modified by gene editing using quantitative real-time polymerase chain reaction.
    Peng C; Wang H; Xu X; Wang X; Chen X; Wei W; Lai Y; Liu G; Godwin ID; Li J; Zhang L; Xu J
    Plant J; 2018 Aug; 95(3):557-567. PubMed ID: 29761864
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Use of CRISPR/Cas Genome Editing Technology for Targeted Mutagenesis in Rice.
    Xu R; Wei P; Yang J
    Methods Mol Biol; 2017; 1498():33-40. PubMed ID: 27709567
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effective screen of CRISPR/Cas9-induced mutants in rice by single-strand conformation polymorphism.
    Zheng X; Yang S; Zhang D; Zhong Z; Tang X; Deng K; Zhou J; Qi Y; Zhang Y
    Plant Cell Rep; 2016 Jul; 35(7):1545-54. PubMed ID: 27007717
    [TBL] [Abstract][Full Text] [Related]  

  • 7. H
    Wu TM; Huang JZ; Oung HM; Hsu YT; Tsai YC; Hong CY
    Int J Mol Sci; 2019 Aug; 20(16):. PubMed ID: 31404948
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Manipulating the Biosynthesis of Bioactive Compound Alkaloids for Next-Generation Metabolic Engineering in Opium Poppy Using CRISPR-Cas 9 Genome Editing Technology.
    Alagoz Y; Gurkok T; Zhang B; Unver T
    Sci Rep; 2016 Aug; 6():30910. PubMed ID: 27483984
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cutting Edge Genetics: CRISPR/Cas9 Editing of Plant Genomes.
    Soyars CL; Peterson BA; Burr CA; Nimchuk ZL
    Plant Cell Physiol; 2018 Aug; 59(8):1608-1620. PubMed ID: 29912402
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Generation of targeted mutant rice using a CRISPR-Cpf1 system.
    Xu R; Qin R; Li H; Li D; Li L; Wei P; Yang J
    Plant Biotechnol J; 2017 Jun; 15(6):713-717. PubMed ID: 27875019
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characteristic and inheritance analysis of targeted mutagenesis mediated by genome editing in rice.
    Tang L; Li YK; Zhang D; Mao BG; Lv QM; Hu YY; Shao Y; Peng Y; Zhao BR; Xia ST
    Yi Chuan; 2016 Aug; 38(8):746-55. PubMed ID: 27531613
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Do transgenesis and marker-assisted backcross breeding produce substantially equivalent plants? A comparative study of transgenic and backcross rice carrying bacterial blight resistant gene Xa21.
    Gao L; Cao Y; Xia Z; Jiang G; Liu G; Zhang W; Zhai W
    BMC Genomics; 2013 Oct; 14():738. PubMed ID: 24165682
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Multiplex gene editing in rice with simplified CRISPR-Cpf1 and CRISPR-Cas9 systems.
    Wang M; Mao Y; Lu Y; Wang Z; Tao X; Zhu JK
    J Integr Plant Biol; 2018 Aug; 60(8):626-631. PubMed ID: 29762900
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improvement of multiplex semi-nested PCR system for screening of rare mutations by high-throughput sequencing.
    Zhang Y; Chi X; Feng L; Wu X; Qi X
    Biotechniques; 2019 Dec; 67(6):294-298. PubMed ID: 31621390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An efficient DNA- and selectable-marker-free genome-editing system using zygotes in rice.
    Toda E; Koiso N; Takebayashi A; Ichikawa M; Kiba T; Osakabe K; Osakabe Y; Sakakibara H; Kato N; Okamoto T
    Nat Plants; 2019 Apr; 5(4):363-368. PubMed ID: 30911123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Knockouts of a late flowering gene via CRISPR-Cas9 confer early maturity in rice at multiple field locations.
    Wang G; Wang C; Lu G; Wang W; Mao G; Habben JE; Song C; Wang J; Chen J; Gao Y; Liu J; Greene TW
    Plant Mol Biol; 2020 Sep; 104(1-2):137-150. PubMed ID: 32623622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Increasing the efficiency of CRISPR-Cas9-VQR precise genome editing in rice.
    Hu X; Meng X; Liu Q; Li J; Wang K
    Plant Biotechnol J; 2018 Jan; 16(1):292-297. PubMed ID: 28605576
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Creation of novel alleles of fragrance gene OsBADH2 in rice through CRISPR/Cas9 mediated gene editing.
    Ashokkumar S; Jaganathan D; Ramanathan V; Rahman H; Palaniswamy R; Kambale R; Muthurajan R
    PLoS One; 2020; 15(8):e0237018. PubMed ID: 32785241
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A piggyBac-mediated transgenesis system for the temporary expression of CRISPR/Cas9 in rice.
    Nishizawa-Yokoi A; Toki S
    Plant Biotechnol J; 2021 Jul; 19(7):1386-1395. PubMed ID: 33529430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of CRISPR/Cas9-induced SD1 rice mutants highlights the importance of molecular characterization in plant molecular breeding.
    Biswas S; Tian J; Li R; Chen X; Luo Z; Chen M; Zhao X; Zhang D; Persson S; Yuan Z; Shi J
    J Genet Genomics; 2020 May; 47(5):273-280. PubMed ID: 32684419
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.