BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31159874)

  • 1. Model-based control for exoskeletons with series elastic actuators evaluated on sit-to-stand movements.
    Vantilt J; Tanghe K; Afschrift M; Bruijnes AKBD; Junius K; Geeroms J; Aertbeliën E; De Groote F; Lefeber D; Jonkers I; De Schutter J
    J Neuroeng Rehabil; 2019 Jun; 16(1):65. PubMed ID: 31159874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bio-inspired control of joint torque and knee stiffness in a robotic lower limb exoskeleton using a central pattern generator.
    Schrade SO; Nager Y; Wu AR; Gassert R; Ijspeert A
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1387-1394. PubMed ID: 28814014
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modulation of shoulder muscle and joint function using a powered upper-limb exoskeleton.
    Wu W; Fong J; Crocher V; Lee PVS; Oetomo D; Tan Y; Ackland DC
    J Biomech; 2018 Apr; 72():7-16. PubMed ID: 29506759
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An assistive lower limb exoskeleton for people with neurological gait disorders.
    Ortlieb A; Bouri M; Baud R; Bleuler H
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():441-446. PubMed ID: 28813859
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Double closed-loop cascade control for lower limb exoskeleton with elastic actuation.
    Zhu Y; Zheng T; Jin H; Yang J; Zhao J
    Technol Health Care; 2015; 24 Suppl 1():S113-22. PubMed ID: 26409545
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Design and Evaluation of Torque Compensation Controllers for a Lower Extremity Exoskeleton.
    Zhou X; Chen X
    J Biomech Eng; 2021 Jan; 143(1):. PubMed ID: 32975567
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust walking control of a lower limb rehabilitation exoskeleton coupled with a musculoskeletal model via deep reinforcement learning.
    Luo S; Androwis G; Adamovich S; Nunez E; Su H; Zhou X
    J Neuroeng Rehabil; 2023 Mar; 20(1):34. PubMed ID: 36935514
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Knee Exoskeleton Reduces Muscle Effort and Improves Balance During Sit-to-Stand Transitions After Stroke: A Case Study.
    Sarkisian SV; Gunnell AJ; Bo Foreman K; Lenzi T
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176078
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Model-Based Method for Minimizing Reflected Motor Inertia in Off-board Actuation Systems: Applications in Exoskeleton Design.
    Anderson A; Richburg C; Czerniecki J; Aubin P
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():360-367. PubMed ID: 31374656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Model-Based Comparison of Passive and Active Assistance Designs in an Occupational Upper Limb Exoskeleton for Overhead Lifting.
    Zhou X; Zheng L
    IISE Trans Occup Ergon Hum Factors; 2021; 9(3-4):167-185. PubMed ID: 34254566
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The effect of muscle weakness on the capability gap during gross motor function: a simulation study supporting design criteria for exoskeletons of the lower limb.
    Afschrift M; De Groote F; De Schutter J; Jonkers I
    Biomed Eng Online; 2014 Aug; 13():111. PubMed ID: 25092209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and validation of a pediatric gait assistance exoskeleton system with fast non-singular terminal sliding mode controller.
    Narayan J; Abbas M; Dwivedy SK
    Med Eng Phys; 2024 Jan; 123():104080. PubMed ID: 38365333
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Coupled exoskeleton assistance simplifies control and maintains metabolic benefits: A simulation study.
    Bianco NA; Franks PW; Hicks JL; Delp SL
    PLoS One; 2022; 17(1):e0261318. PubMed ID: 34986191
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Actuation system modelling and design optimization for an assistive exoskeleton for disabled and elderly with series and parallel elasticity.
    Ghaffar A; Dehghani-Sanij AA; Xie SQ
    Technol Health Care; 2023; 31(4):1129-1151. PubMed ID: 36970915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluation of Motor Primitive-Based Adaptive Control for Lower Limb Exoskeletons.
    Nunes PF; Ostan I; Siqueira AAG
    Front Robot AI; 2020; 7():575217. PubMed ID: 33501336
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A fuzzy controller for lower limb exoskeletons during sit-to-stand and stand-to-sit movement using wearable sensors.
    Reza SM; Ahmad N; Choudhury IA; Ghazilla RA
    Sensors (Basel); 2014 Mar; 14(3):4342-63. PubMed ID: 24599193
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Design and characterization of a torque-controllable actuator for knee assistance during sit-to-stand.
    Shepherd MK; Rouse EJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2016 Aug; 2016():2228-2231. PubMed ID: 28324960
    [TBL] [Abstract][Full Text] [Related]  

  • 18. BioMot exoskeleton - Towards a smart wearable robot for symbiotic human-robot interaction.
    Bacek T; Moltedo M; Langlois K; Prieto GA; Sanchez-Villamanan MC; Gonzalez-Vargas J; Vanderborght B; Lefeber D; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1666-1671. PubMed ID: 28814059
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tracking control of time-varying knee exoskeleton disturbed by interaction torque.
    Li Z; Ma W; Yin Z; Guo H
    ISA Trans; 2017 Nov; 71(Pt 2):458-466. PubMed ID: 28823408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Joint stiffness modulation of compliant actuators for lower limb exoskeletons.
    Gonzalez-Vargas J; Shimoda S; Asin-Prieto G; Pons JL; Moreno JC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():1287-1292. PubMed ID: 28813998
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.