BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

257 related articles for article (PubMed ID: 31159874)

  • 21. Design of a Payload Adjustment Device for an Unpowered Lower-Limb Exoskeleton.
    Yun J; Kang O; Joe HM
    Sensors (Basel); 2021 Jun; 21(12):. PubMed ID: 34208291
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Cooperative ankle-exoskeleton control can reduce effort to recover balance after unexpected disturbances during walking.
    Bayón C; Keemink AQL; van Mierlo M; Rampeltshammer W; van der Kooij H; van Asseldonk EHF
    J Neuroeng Rehabil; 2022 Feb; 19(1):21. PubMed ID: 35172846
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Series elastic actuation of an elbow rehabilitation exoskeleton with axis misalignment adaptation.
    Wu KY; Su YY; Yu YL; Lin KY; Lan CC
    IEEE Int Conf Rehabil Robot; 2017 Jul; 2017():567-572. PubMed ID: 28813880
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Can lower-limb exoskeletons support sit-to-stand motions in frail elderly without crutches? A study combining optimal control and motion capture.
    Lau JCL; Mombaur K
    Front Neurorobot; 2024; 18():1348029. PubMed ID: 38638361
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Effects of Incline Level on Optimized Lower-Limb Exoskeleton Assistance: A Case Series.
    Franks PW; Bryan GM; Reyes R; O'Donovan MP; Gregorczyk KN; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2494-2505. PubMed ID: 35930513
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design and Validation of a Lightweight Hip Exoskeleton Driven by Series Elastic Actuator With Two-Motor Variable Speed Transmission.
    Zhang T; Ning C; Li Y; Wang M
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2456-2466. PubMed ID: 36001514
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Heuristic-Based Ankle Exoskeleton Control for Co-Adaptive Assistance of Human Locomotion.
    Jackson RW; Collins SH
    IEEE Trans Neural Syst Rehabil Eng; 2019 Oct; 27(10):2059-2069. PubMed ID: 31425120
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Design, Modelling, and Experimental Evaluation of a Compact Elastic Actuator for a Gait Assisting Exoskeleton.
    Herodotou P; Wang S
    IEEE Int Conf Rehabil Robot; 2019 Jun; 2019():331-336. PubMed ID: 31374651
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Quantitative and Qualitative Evaluation of Exoskeleton Transparency Controllers for Upper-Limb Neurorehabilitation.
    Gasperina SD; Ratschat AL; Marchal-Crespo L
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941246
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Knee Compliance Reduces Peak Swing Phase Collision Forces in a Lower-Limb Exoskeleton Leg: A Test Bench Evaluation.
    Schrade SO; Menner M; Shirota C; Winiger P; Stutz A; Zeilinger MN; Lambercy O; Gassert R
    IEEE Trans Biomed Eng; 2021 Feb; 68(2):535-544. PubMed ID: 32746051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Dynamic Model of a Humanoid Exoskeleton of a Lower Limb with Hydraulic Actuators.
    Glowinski S; Obst M; Majdanik S; Potocka-Banaś B
    Sensors (Basel); 2021 May; 21(10):. PubMed ID: 34069145
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effect of Assistance Timing in Knee Extensor Muscle Activation During Sit-to-Stand Using a Bilateral Robotic Knee Exoskeleton.
    Choi G; Lee D; Kang I; Young AJ
    Annu Int Conf IEEE Eng Med Biol Soc; 2021 Nov; 2021():4879-4882. PubMed ID: 34892302
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Mechanics and energetics of post-stroke walking aided by a powered ankle exoskeleton with speed-adaptive myoelectric control.
    McCain EM; Dick TJM; Giest TN; Nuckols RW; Lewek MD; Saul KR; Sawicki GS
    J Neuroeng Rehabil; 2019 May; 16(1):57. PubMed ID: 31092269
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Self-Aligning Mechanism Improves Comfort and Performance With a Powered Knee Exoskeleton.
    Sarkisian SV; Ishmael MK; Lenzi T
    IEEE Trans Neural Syst Rehabil Eng; 2021; 29():629-640. PubMed ID: 33684041
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Metabolic Effects Induced by a Kinematically Compatible Hip Exoskeleton During STS.
    Junius K; Lefeber N; Swinnen E; Vanderborght B; Lefeber D
    IEEE Trans Biomed Eng; 2018 Jun; 65(6):1399-1409. PubMed ID: 28945586
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Development and Validation of a Self-Aligning Knee Exoskeleton With Hip Rotation Capability.
    Li G; Liang X; Lu H; Su T; Hou ZG
    IEEE Trans Neural Syst Rehabil Eng; 2024; 32():472-481. PubMed ID: 38227411
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Design and analysis of a lower limb assistive exoskeleton robot.
    Li X; Wang KY; Yang ZY
    Technol Health Care; 2024; 32(S1):79-93. PubMed ID: 38759039
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Custom sizing of lower limb exoskeleton actuators using gait dynamic modelling of children with cerebral palsy.
    Samadi B; Achiche S; Parent A; Ballaz L; Chouinard U; Raison M
    Comput Methods Biomech Biomed Engin; 2016 Nov; 19(14):1519-24. PubMed ID: 26980164
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Biomechanical design of escalading lower limb exoskeleton with novel linkage joints.
    Zhang G; Liu G; Ma S; Wang T; Zhao J; Zhu Y
    Technol Health Care; 2017 Jul; 25(S1):267-273. PubMed ID: 28582915
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Novel Design and Implementation of a Neuromuscular Controller on a Hip Exoskeleton for Partial Gait Assistance.
    Messara S; Manzoori AR; Di Russo A; Ijspeert A; Bouri M
    IEEE Int Conf Rehabil Robot; 2023 Sep; 2023():1-6. PubMed ID: 37941265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.