These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 31160055)

  • 1. Thermodynamic Activity-Based Solvent Design for Bioreactions.
    Wangler A; Held C; Sadowski G
    Trends Biotechnol; 2019 Oct; 37(10):1038-1041. PubMed ID: 31160055
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cosolvent and pressure effects on enzyme-catalysed hydrolysis reactions.
    Held C; Stolzke T; Knierbein M; Jaworek MW; Luong TQ; Winter R; Sadowski G
    Biophys Chem; 2019 Sep; 252():106209. PubMed ID: 31254793
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermodynamics of Bioreactions.
    Held C; Sadowski G
    Annu Rev Chem Biomol Eng; 2016 Jun; 7():395-414. PubMed ID: 27276551
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic Activity-Based Progress Curve Analysis in Enzyme Kinetics.
    Pleiss J
    Trends Biotechnol; 2018 Mar; 36(3):234-238. PubMed ID: 29107319
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simultaneous Prediction of Cosolvent Influence on Reaction Equilibrium and Michaelis Constants of Enzyme-Catalyzed Ketone Reductions.
    Wangler A; Hüser A; Sadowski G; Held C
    ACS Omega; 2019 Apr; 4(4):6264-6272. PubMed ID: 31459767
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic activity-based intrinsic enzyme kinetic sheds light on enzyme-solvent interactions.
    Grosch JH; Wagner D; Nistelkas V; Spieß AC
    Biotechnol Prog; 2017 Jan; 33(1):96-103. PubMed ID: 27813314
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction and Experimental Validation of Co-Solvent Influence on Michaelis Constants: A Thermodynamic Activity-Based Approach.
    Wangler A; Böttcher D; Hüser A; Sadowski G; Held C
    Chemistry; 2018 Nov; 24(61):16418-16425. PubMed ID: 30067281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Alcohol Dehydrogenase Catalysis in Deep Eutectic Solvent/Water Mixtures.
    Huang L; Bittner JP; Domínguez de María P; Jakobtorweihen S; Kara S
    Chembiochem; 2020 Mar; 21(6):811-817. PubMed ID: 31605652
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combined co-solvent and pressure effect on kinetics of a peptide hydrolysis: an activity-based approach.
    Knierbein M; Wangler A; Luong TQ; Winter R; Held C; Sadowski G
    Phys Chem Chem Phys; 2019 Oct; 21(40):22224-22229. PubMed ID: 31576857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Engineering enzyme stability and resistance to an organic cosolvent by modification of residues in the access tunnel.
    Koudelakova T; Chaloupkova R; Brezovsky J; Prokop Z; Sebestova E; Hesseler M; Khabiri M; Plevaka M; Kulik D; Kuta Smatanova I; Rezacova P; Ettrich R; Bornscheuer UT; Damborsky J
    Angew Chem Int Ed Engl; 2013 Feb; 52(7):1959-63. PubMed ID: 23303607
    [No Abstract]   [Full Text] [Related]  

  • 11. Solvent Stability Study with Thermodynamic Analysis and Superior Biocatalytic Activity of Burkholderia cepacia Lipase Immobilized on Biocompatible Hybrid Matrix of Poly(vinyl alcohol) and Hypromellose.
    Badgujar KC; Bhanage BM
    J Phys Chem B; 2014 Dec; 118(51):14808-19. PubMed ID: 25474503
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expansion of access tunnels and active-site cavities influence activity of haloalkane dehalogenases in organic cosolvents.
    Stepankova V; Khabiri M; Brezovsky J; Pavelka A; Sykora J; Amaro M; Minofar B; Prokop Z; Hof M; Ettrich R; Chaloupkova R; Damborsky J
    Chembiochem; 2013 May; 14(7):890-7. PubMed ID: 23564727
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics of nearly dry enzymes in organic solvents: implications for biocatalysis in the absence of water.
    Clark DS
    Philos Trans R Soc Lond B Biol Sci; 2004 Aug; 359(1448):1299-307; discussion 1307, 1323-8. PubMed ID: 15306384
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermodynamic predictions for biocatalysis in nonconventional media: theory, tests, and recommendations for experimental design and analysis.
    Halling PJ
    Enzyme Microb Technol; 1994 Mar; 16(3):178-206. PubMed ID: 7764598
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Michaelis-Menten kinetics under non-isothermal conditions.
    Lervik A; Kjelstrup S; Qian H
    Phys Chem Chem Phys; 2015 Jan; 17(2):1317-24. PubMed ID: 25425022
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Combining solvent isotope effects with substrate isotope effects in mechanistic studies of alcohol and amine oxidation by enzymes.
    Fitzpatrick PF
    Biochim Biophys Acta; 2015 Nov; 1854(11):1746-55. PubMed ID: 25448013
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Thermodynamic parameters monitoring the equilibrium shift of enzyme-catalyzed hydrolysis/synthesis reactions in favor of synthesis in mixtures of water and organic solvent.
    Deschrevel B; Vincent JC; Ripoll C; Thellier M
    Biotechnol Bioeng; 2003 Jan; 81(2):167-77. PubMed ID: 12451553
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Asymmetric enzymatic oxidoreductions in organic solvents.
    Klibanov AM
    Curr Opin Biotechnol; 2003 Aug; 14(4):427-31. PubMed ID: 12943853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpretation of cytochrome P450 monooxygenase kinetics by modeling of thermodynamic activity.
    Ferrario V; Hansen N; Pleiss J
    J Inorg Biochem; 2018 Jun; 183():172-178. PubMed ID: 29530593
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Recent progress in biocatalysis using supercritical carbon dioxide.
    Matsuda T
    J Biosci Bioeng; 2013 Mar; 115(3):233-41. PubMed ID: 23164681
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.