These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

170 related articles for article (PubMed ID: 31160089)

  • 1. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal.
    Li G; Chen X; Zhou X; Huang R; Li L; Miao Y; Liu D; Zhang R
    Biochem Biophys Res Commun; 2019 Jul; 515(3):417-422. PubMed ID: 31160089
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design.
    Li G; Zhou X; Li Z; Liu Y; Liu D; Miao Y; Wan Q; Zhang R
    Appl Microbiol Biotechnol; 2021 Jun; 105(11):4561-4576. PubMed ID: 34014347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus.
    Dodda SR; Hossain M; Kapoor BS; Dasgupta S; B VPR; Aikat K; Mukhopadhyay SS
    Comput Biol Chem; 2021 Apr; 91():107451. PubMed ID: 33601238
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic and functional characterization of a novel GH10 endo-β- 1,4-xylanase with a ricin-type β-trefoil domain-like domain from Luteimicrobium xylanilyticum HY-24.
    Kim DY; Lee SH; Lee MJ; Cho HY; Lee JS; Rhee YH; Shin DH; Son KH; Park HY
    Int J Biol Macromol; 2018 Jan; 106():620-628. PubMed ID: 28813686
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhanced thermostability of a mesophilic xylanase by N-terminal replacement designed by molecular dynamics simulation.
    Yin X; Li JF; Wang JQ; Tang CD; Wu MC
    J Sci Food Agric; 2013 Sep; 93(12):3016-23. PubMed ID: 23512640
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Discovery of a Thermostable GH10 Xylanase with Broad Substrate Specificity from the Arctic Mid-Ocean Ridge Vent System.
    Fredriksen L; Stokke R; Jensen MS; Westereng B; Jameson JK; Steen IH; Eijsink VGH
    Appl Environ Microbiol; 2019 Mar; 85(6):. PubMed ID: 30635385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. C-Terminal carbohydrate-binding module 9_2 fused to the N-terminus of GH11 xylanase from Aspergillus niger.
    Xu W; Liu Y; Ye Y; Liu M; Han L; Song A; Liu L
    Biotechnol Lett; 2016 Oct; 38(10):1739-45. PubMed ID: 27311309
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance.
    Zheng F; Huang J; Liu X; Hu H; Long L; Chen K; Ding S
    Appl Microbiol Biotechnol; 2016 Apr; 100(8):3555-65. PubMed ID: 26621803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Process desired functional attributes of an endoxylanase of GH10 family from a new strain of Aspergillus terreus S9.
    Sharma S; Sharma V; Nargotra P; Bajaj BK
    Int J Biol Macromol; 2018 Aug; 115():663-671. PubMed ID: 29684454
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of helix and fingertip mutations on the thermostability of xyn11A investigated by molecular dynamics simulations and enzyme activity assays.
    Sutthibutpong T; Rattanarojpong T; Khunrae P
    J Biomol Struct Dyn; 2018 Nov; 36(15):3978-3992. PubMed ID: 29129140
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of CBM1 and linker region on enzymatic properties of a novel thermostable dimeric GH10 xylanase (Xyn10A) from filamentous fungus Aspergillus fumigatus Z5.
    Miao Y; Kong Y; Li P; Li G; Liu D; Shen Q; Zhang R
    AMB Express; 2018 Mar; 8(1):44. PubMed ID: 29564574
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improvement of thermostability and activity of Trichoderma reesei endo-xylanase Xyn III on insoluble substrates.
    Matsuzawa T; Kaneko S; Yaoi K
    Appl Microbiol Biotechnol; 2016 Sep; 100(18):8043-51. PubMed ID: 27138202
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264.
    Xie J; Song L; Li X; Yi X; Xu H; Li J; Qiao D; Cao Y
    Curr Microbiol; 2011 Jan; 62(1):242-8. PubMed ID: 20593181
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of introducing disulfide bridges in C-terminal structure on the thermostability of xylanase XynZF-2 from Aspergillus niger.
    Cai L; Zhang M; Shao T; He Y; Li J; Ren B; Zhou C
    J Gen Appl Microbiol; 2019 Dec; 65(5):240-245. PubMed ID: 30905899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of the removal of N-terminal non-structured amino acids on activity and stability of xylanases from Orpinomyces sp. PC-2.
    Ventorim RZ; de Oliveira Mendes TA; Trevizano LM; Dos Santos Camargos AM; Guimarães VM
    Int J Biol Macromol; 2018 Jan; 106():312-319. PubMed ID: 28782612
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of the Wild-Type and Truncated Forms of a Neutral GH10 Xylanase from
    Hu H; Chen K; Li L; Long L; Ding S
    J Microbiol Biotechnol; 2017 Apr; 27(4):775-784. PubMed ID: 28173691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-β-Xylanase from Caldicellulosiruptor owensensis.
    Liu X; Liu T; Zhang Y; Xin F; Mi S; Wen B; Gu T; Shi X; Wang F; Sun L
    J Agric Food Chem; 2018 Jan; 66(1):187-193. PubMed ID: 29236500
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structural insights into N-terminal to C-terminal interactions and implications for thermostability of a (β/α)8-triosephosphate isomerase barrel enzyme.
    Mahanta P; Bhardwaj A; Kumar K; Reddy VS; Ramakumar S
    FEBS J; 2015 Sep; 282(18):3543-55. PubMed ID: 26102498
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improvement of the catalytic characteristics of a salt-tolerant GH10 xylanase from Streptomyce rochei L10904.
    Li Q; Sun B; Li X; Xiong K; Xu Y; Yang R; Hou J; Teng C
    Int J Biol Macromol; 2018 Feb; 107(Pt B):1447-1455. PubMed ID: 29030195
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The family 22 carbohydrate-binding module of bifunctional xylanase/β-glucanase Xyn10E from Paenibacillus curdlanolyticus B-6 has an important role in lignocellulose degradation.
    Sermsathanaswadi J; Baramee S; Tachaapaikoon C; Pason P; Ratanakhanokchai K; Kosugi A
    Enzyme Microb Technol; 2017 Jan; 96():75-84. PubMed ID: 27871388
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.