These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 31160181)

  • 1. Humming Facilitates a Gradual Increase in Vocal Intensity by Alleviating the Enhancement of Vocal Fold Contact and Supraglottic Constriction.
    de Hoop T; Ogawa M; Iwahashi T; Umatani M; Hosokawa K; Kato C; Inohara H
    J Voice; 2021 Jan; 35(1):156.e1-156.e13. PubMed ID: 31160181
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Effects of Humming on the Prephonatory Vocal Fold Motions Under High-Speed Digital Imaging in Nondysphonic Speakers.
    Iwahashi T; Ogawa M; Hosokawa K; Kato C; Inohara H
    J Voice; 2017 May; 31(3):291-299. PubMed ID: 27726905
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Immediate effects of humming on computed electroglottographic parameters in patients with muscle tension dysphonia.
    Ogawa M; Hosokawa K; Yoshida M; Iwahashi T; Hashimoto M; Inohara H
    J Voice; 2014 Nov; 28(6):733-41. PubMed ID: 24930372
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Investigation of the Immediate Effects of Humming on Vocal Fold Vibration Irregularity Using Electroglottography and High-speed Laryngoscopy in Patients With Organic Voice Disorders.
    Vlot C; Ogawa M; Hosokawa K; Iwahashi T; Kato C; Inohara H
    J Voice; 2017 Jan; 31(1):48-56. PubMed ID: 27178453
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Laryngeal strategies to minimize vocal fold contact pressure and their effect on voice production.
    Zhang Z
    J Acoust Soc Am; 2020 Aug; 148(2):1039. PubMed ID: 32873018
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glottal opening and closing events investigated by electroglottography and super-high-speed video recordings.
    Herbst CT; Lohscheller J; Švec JG; Henrich N; Weissengruber G; Fitch WT
    J Exp Biol; 2014 Mar; 217(Pt 6):955-63. PubMed ID: 24622896
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Immediate effectiveness of humming on the supraglottic compression in subjects with muscle tension dysphonia.
    Ogawa M; Hosokawa K; Yoshida M; Yoshii T; Shiromoto O; Inohara H
    Folia Phoniatr Logop; 2013; 65(3):123-8. PubMed ID: 24296412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Feasibility of a Neck-Surface Accelerometer for Estimating the Amount of Acoustic Output During Phonation Regardless of the Difference in the Mouth Configuration.
    Umatani M; Ogawa M; Iwahashi T; Hosokawa K; Kato C; Inohara H
    J Voice; 2022 May; 36(3):297-308. PubMed ID: 32654866
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intraglottal Pressure: A Comparison Between Male and Female Larynxes.
    Li S; Scherer RC; Wan M; Wang S; Song B
    J Voice; 2020 Nov; 34(6):813-822. PubMed ID: 31311664
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aerodynamic and acoustic effects of false vocal folds and epiglottis in excised larynx models.
    Alipour F; Jaiswal S; Finnegan E
    Ann Otol Rhinol Laryngol; 2007 Feb; 116(2):135-44. PubMed ID: 17388238
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Glottal Adduction and Subglottal Pressure in Singing.
    Herbst CT; Hess M; Müller F; Švec JG; Sundberg J
    J Voice; 2015 Jul; 29(4):391-402. PubMed ID: 25944295
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nasal Resistance (NR) Technique: A Novel Approach to Improve Glottal Adduction.
    Radhakrishnan NN
    J Voice; 2022 Jan; 36(1):91-97. PubMed ID: 32522383
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electroglottographic evaluation of gender and vowel effects during modal and vocal fry phonation.
    Chen Y; Robb MP; Gilbert HR
    J Speech Lang Hear Res; 2002 Oct; 45(5):821-9. PubMed ID: 12381041
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Assessment of the dynamics of vocal fold contact from the electroglottogram: data from normal male subjects.
    Orlikoff RF
    J Speech Hear Res; 1991 Oct; 34(5):1066-72. PubMed ID: 1749236
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vocal tract adjustments to minimize vocal fold contact pressure during phonation.
    Zhang Z
    J Acoust Soc Am; 2021 Sep; 150(3):1609. PubMed ID: 34598628
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Feasibility of Gastroesophageal Manometry for Continuously Evaluating the Degree of Expiratory Effort During Successful Crescendo Phonation.
    Umatani M; Ogawa M; Hosokawa K; Kato C; Okajima E; Iwahashi T; Inohara H
    J Voice; 2023 May; 37(3):470.e7-470.e16. PubMed ID: 33707030
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic MRI of larynx and vocal fold vibrations in normal phonation.
    Ahmad M; Dargaud J; Morin A; Cotton F
    J Voice; 2009 Mar; 23(2):235-9. PubMed ID: 18082366
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electroglottographic analysis of actresses and nonactresses' voices in different levels of intensity.
    Master S; Guzman M; Carlos de Miranda H; Lloyd A
    J Voice; 2013 Mar; 27(2):187-94. PubMed ID: 23294706
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Changes in glottal configuration in women after loud talking.
    Linville SE
    J Voice; 1995 Mar; 9(1):57-65. PubMed ID: 7757151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Oral vibratory sensations during voice production at different laryngeal and semi-occluded vocal tract configurations.
    Zhang Z
    J Acoust Soc Am; 2022 Jul; 152(1):302. PubMed ID: 35931496
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.