These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

264 related articles for article (PubMed ID: 31160289)

  • 1. Utilization of CRISPR Interference To Validate MmpL3 as a Drug Target in
    McNeil MB; Cook GM
    Antimicrob Agents Chemother; 2019 Aug; 63(8):. PubMed ID: 31160289
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Utilization of CRISPR interference to investigate the contribution of genes to pathogenesis in a macrophage model of Mycobacterium tuberculosis infection.
    Cheung CY; McNeil MB; Cook GM
    J Antimicrob Chemother; 2022 Feb; 77(3):615-619. PubMed ID: 34850009
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 1
    Korycka-Machała M; Viljoen A; Pawełczyk J; Borówka P; Dziadek B; Gobis K; Brzostek A; Kawka M; Blaise M; Strapagiel D; Kremer L; Dziadek J
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31332069
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HC2091 Kills Mycobacterium tuberculosis by Targeting the MmpL3 Mycolic Acid Transporter.
    Zheng H; Williams JT; Coulson GB; Haiderer ER; Abramovitch RB
    Antimicrob Agents Chemother; 2018 Jul; 62(7):. PubMed ID: 29661875
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Therapeutic Potential of the Mycobacterium tuberculosis Mycolic Acid Transporter, MmpL3.
    Li W; Obregón-Henao A; Wallach JB; North EJ; Lee RE; Gonzalez-Juarrero M; Schnappinger D; Jackson M
    Antimicrob Agents Chemother; 2016 Sep; 60(9):5198-207. PubMed ID: 27297488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiple Mutations in Mycobacterium tuberculosis MmpL3 Increase Resistance to MmpL3 Inhibitors.
    McNeil MB; O'Malley T; Dennison D; Shelton CD; Sunde B; Parish T
    mSphere; 2020 Oct; 5(5):. PubMed ID: 33055263
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A piperidinol-containing molecule is active against
    Dupont C; Chen Y; Xu Z; Roquet-Banères F; Blaise M; Witt AK; Dubar F; Biot C; Guérardel Y; Maurer FP; Chng SS; Kremer L
    J Biol Chem; 2019 Nov; 294(46):17512-17523. PubMed ID: 31562241
    [No Abstract]   [Full Text] [Related]  

  • 8. Identification of New MmpL3 Inhibitors by Untargeted and Targeted Mutant Screens Defines MmpL3 Domains with Differential Resistance.
    Williams JT; Haiderer ER; Coulson GB; Conner KN; Ellsworth E; Chen C; Alvarez-Cabrera N; Li W; Jackson M; Dick T; Abramovitch RB
    Antimicrob Agents Chemother; 2019 Oct; 63(10):. PubMed ID: 31405862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Essentiality of mmpL3 and impact of its silencing on Mycobacterium tuberculosis gene expression.
    Degiacomi G; Benjak A; Madacki J; Boldrin F; Provvedi R; Palù G; Kordulakova J; Cole ST; Manganelli R
    Sci Rep; 2017 Feb; 7():43495. PubMed ID: 28240248
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Variants of katG, inhA and nat genes are not associated with mutations in efflux pump genes (mmpL3 and mmpL7) in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis from India.
    Unissa AN; Dusthackeer VNA; Kumar MP; Nagarajan P; Sukumar S; Kumari VI; Lakshmi AR; Hanna LE
    Tuberculosis (Edinb); 2017 Dec; 107():144-148. PubMed ID: 29050763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Comparative genomics of Mycobacterium tuberculosis drug efflux pumps and their transcriptional regulators.
    Liu H; Xie J
    Crit Rev Eukaryot Gene Expr; 2014; 24(2):163-80. PubMed ID: 24940769
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mycobacterial Membrane Protein Large 3 (MmpL3) Inhibitors: A Promising Approach to Combat Tuberculosis.
    Umare MD; Khedekar PB; Chikhale RV
    ChemMedChem; 2021 Oct; 16(20):3136-3148. PubMed ID: 34288519
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Lipid transport in Mycobacterium tuberculosis and its implications in virulence and drug development.
    Bailo R; Bhatt A; Aínsa JA
    Biochem Pharmacol; 2015 Aug; 96(3):159-67. PubMed ID: 25986884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of combined CRISPR screening for genetic and chemical-genetic interaction profiling in
    Yan MY; Zheng D; Li SS; Ding XY; Wang CL; Guo XP; Zhan L; Jin Q; Yang J; Sun YC
    Sci Adv; 2022 Nov; 8(47):eadd5907. PubMed ID: 36417506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CRISPR interference identifies vulnerable cellular pathways with bactericidal phenotypes in Mycobacterium tuberculosis.
    McNeil MB; Keighley LM; Cook JR; Cheung CY; Cook GM
    Mol Microbiol; 2021 Oct; 116(4):1033-1043. PubMed ID: 34346123
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid Gene Silencing Followed by Antimicrobial Susceptibility Testing for Target Validation in Antibiotic Discovery.
    Daniel C; Willcocks S; Bhakta S
    Methods Mol Biol; 2024; 2833():23-33. PubMed ID: 38949697
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Mechanisms of fluoroquinolone resistance in Mycobacterium tuberculosis.
    Zhang YJ; Li XJ; Mi KX
    Yi Chuan; 2016 Oct; 38(10):918-927. PubMed ID: 27806933
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The
    Wei J; Lu N; Li Z; Wu X; Jiang T; Xu L; Yang C; Guo S
    Biomed Res Int; 2019; 2019():7861695. PubMed ID: 31061828
    [TBL] [Abstract][Full Text] [Related]  

  • 19. CRISPRi-mediated characterization of novel anti-tuberculosis targets: Mycobacterial peptidoglycan modifications promote beta-lactam resistance and intracellular survival.
    Silveiro C; Marques M; Olivença F; Pires D; Mortinho D; Nunes A; Pimentel M; Anes E; Catalão MJ
    Front Cell Infect Microbiol; 2023; 13():1089911. PubMed ID: 37009497
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Development of antituberculous drugs: current status and future prospects].
    Tomioka H; Namba K
    Kekkaku; 2006 Dec; 81(12):753-74. PubMed ID: 17240921
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.