BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31160378)

  • 21. Maf1, repressor of tRNA transcription, is involved in the control of gluconeogenetic genes in Saccharomyces cerevisiae.
    Morawiec E; Wichtowska D; Graczyk D; Conesa C; Lefebvre O; Boguta M
    Gene; 2013 Aug; 526(1):16-22. PubMed ID: 23657116
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Experimental evolution reveals a general role for the methyltransferase Hmt1 in noise buffering.
    You ST; Jhou YT; Kao CF; Leu JY
    PLoS Biol; 2019 Oct; 17(10):e3000433. PubMed ID: 31613873
    [TBL] [Abstract][Full Text] [Related]  

  • 23. In vivo analysis of nucleolar proteins modified by the yeast arginine methyltransferase Hmt1/Rmt1p.
    Xu C; Henry PA; Setya A; Henry MF
    RNA; 2003 Jun; 9(6):746-59. PubMed ID: 12756332
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic interactions of MAF1 identify a role for Med20 in transcriptional repression of ribosomal protein genes.
    Willis IM; Chua G; Tong AH; Brost RL; Hughes TR; Boone C; Moir RD
    PLoS Genet; 2008 Jul; 4(7):e1000112. PubMed ID: 18604275
    [TBL] [Abstract][Full Text] [Related]  

  • 25. RNA polymerase III under control: repression and de-repression.
    Boguta M; Graczyk D
    Trends Biochem Sci; 2011 Sep; 36(9):451-6. PubMed ID: 21816617
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of protein arginine methylation in the formation of silent chromatin.
    Yu MC; Lamming DW; Eskin JA; Sinclair DA; Silver PA
    Genes Dev; 2006 Dec; 20(23):3249-54. PubMed ID: 17158743
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Yeast proteins Gar1p, Nop1p, Npl3p, Nsr1p, and Rps2p are natively methylated and are substrates of the arginine methyltransferase Hmt1p.
    Yagoub D; Hart-Smith G; Moecking J; Erce MA; Wilkins MR
    Proteomics; 2015 Sep; 15(18):3209-18. PubMed ID: 26081071
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Full repression of RNA polymerase III transcription requires interaction between two domains of its negative regulator Maf1.
    Gajda A; Towpik J; Steuerwald U; Müller CW; Lefebvre O; Boguta M
    J Biol Chem; 2010 Nov; 285(46):35719-27. PubMed ID: 20817737
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Yeast arginine methyltransferase Hmt1p regulates transcription elongation and termination by methylating Npl3p.
    Wong CM; Tang HM; Kong KY; Wong GW; Qiu H; Jin DY; Hinnebusch AG
    Nucleic Acids Res; 2010 Apr; 38(7):2217-28. PubMed ID: 20053728
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Recovery of RNA polymerase III transcription from the glycerol-repressed state: revisiting the role of protein kinase CK2 in Maf1 phosphoregulation.
    Moir RD; Lee J; Willis IM
    J Biol Chem; 2012 Aug; 287(36):30833-41. PubMed ID: 22810236
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Maf1, a general negative regulator of RNA polymerase III in yeast.
    Boguta M
    Biochim Biophys Acta; 2013; 1829(3-4):376-84. PubMed ID: 23201230
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Replication stress checkpoint signaling controls tRNA gene transcription.
    Nguyen VC; Clelland BW; Hockman DJ; Kujat-Choy SL; Mewhort HE; Schultz MC
    Nat Struct Mol Biol; 2010 Aug; 17(8):976-81. PubMed ID: 20639887
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Site-directed biochemical analyses reveal that the switchable C-terminus of Rpc31 contributes to RNA polymerase III transcription initiation.
    Shekhar AC; Sun YE; Khoo SK; Lin YC; Malau EB; Chang WH; Chen HT
    Nucleic Acids Res; 2023 May; 51(9):4223-4236. PubMed ID: 36484109
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Maf1-mediated repression of RNA polymerase III transcription inhibits tRNA degradation via RTD pathway.
    Turowski TW; Karkusiewicz I; Kowal J; Boguta M
    RNA; 2012 Oct; 18(10):1823-32. PubMed ID: 22919049
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation.
    Young BD; Weiss DI; Zurita-Lopez CI; Webb KJ; Clarke SG; McBride AE
    Biochemistry; 2012 Jun; 51(25):5091-104. PubMed ID: 22650761
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Signaling to and from the RNA Polymerase III Transcription and Processing Machinery.
    Willis IM; Moir RD
    Annu Rev Biochem; 2018 Jun; 87():75-100. PubMed ID: 29328783
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Function of TFIIIC, RNA polymerase III initiation factor, in activation and repression of tRNA gene transcription.
    Ciesla M; Skowronek E; Boguta M
    Nucleic Acids Res; 2018 Oct; 46(18):9444-9455. PubMed ID: 30053100
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Maf1p, a negative effector of RNA polymerase III in Saccharomyces cerevisiae.
    Pluta K; Lefebvre O; Martin NC; Smagowicz WJ; Stanford DR; Ellis SR; Hopper AK; Sentenac A; Boguta M
    Mol Cell Biol; 2001 Aug; 21(15):5031-40. PubMed ID: 11438659
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Arginine methylation of the C-terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization.
    Huang L; Wang Z; Narayanan N; Yang Y
    Nucleic Acids Res; 2018 Apr; 46(6):3061-3074. PubMed ID: 29471495
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Yeast Hsl7 (histone synthetic lethal 7) catalyses the in vitro formation of omega-N(G)-monomethylarginine in calf thymus histone H2A.
    Miranda TB; Sayegh J; Frankel A; Katz JE; Miranda M; Clarke S
    Biochem J; 2006 May; 395(3):563-70. PubMed ID: 16426232
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.