BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 31160378)

  • 41. Protein kinase A regulates RNA polymerase III transcription through the nuclear localization of Maf1.
    Moir RD; Lee J; Haeusler RA; Desai N; Engelke DR; Willis IM
    Proc Natl Acad Sci U S A; 2006 Oct; 103(41):15044-9. PubMed ID: 17005718
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Expression of proteins with dimethylarginines in Escherichia coli for protein-protein interaction studies.
    Hsieh CH; Huang SY; Wu YC; Liu LF; Han CC; Liu YC; Tam MF
    Protein Sci; 2007 May; 16(5):919-28. PubMed ID: 17456744
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Maf1, a new player in the regulation of human RNA polymerase III transcription.
    Reina JH; Azzouz TN; Hernandez N
    PLoS One; 2006 Dec; 1(1):e134. PubMed ID: 17205138
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Maf1-mediated regulation of yeast RNA polymerase III is correlated with CCA addition at the 3' end of tRNA precursors.
    Foretek D; Nuc P; Żywicki M; Karlowski WM; Kudla G; Boguta M
    Gene; 2017 May; 612():12-18. PubMed ID: 27575455
    [TBL] [Abstract][Full Text] [Related]  

  • 45. C25, an essential RNA polymerase III subunit related to the RNA polymerase II subunit RPB7.
    Sadhale PP; Woychik NA
    Mol Cell Biol; 1994 Sep; 14(9):6164-70. PubMed ID: 8065349
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Molecular basis of RNA polymerase III transcription repression by Maf1.
    Vannini A; Ringel R; Kusser AG; Berninghausen O; Kassavetis GA; Cramer P
    Cell; 2010 Oct; 143(1):59-70. PubMed ID: 20887893
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Maf1 is an essential mediator of diverse signals that repress RNA polymerase III transcription.
    Upadhya R; Lee J; Willis IM
    Mol Cell; 2002 Dec; 10(6):1489-94. PubMed ID: 12504022
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Methylation of arginine by PRMT1 regulates Nrf2 transcriptional activity during the antioxidative response.
    Liu X; Li H; Liu L; Lu Y; Gao Y; Geng P; Li X; Huang B; Zhang Y; Lu J
    Biochim Biophys Acta; 2016 Aug; 1863(8):2093-103. PubMed ID: 27183873
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Analysis of the proteome of Saccharomyces cerevisiae for methylarginine.
    Low JK; Hart-Smith G; Erce MA; Wilkins MR
    J Proteome Res; 2013 Sep; 12(9):3884-99. PubMed ID: 23865587
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Mutation in a new gene MAF1 affects tRNA suppressor efficiency in Saccharomyces cerevisiae.
    Boguta M; Czerska K; Zoładek T
    Gene; 1997 Feb; 185(2):291-6. PubMed ID: 9055829
    [TBL] [Abstract][Full Text] [Related]  

  • 51. TORC1-dependent sumoylation of Rpc82 promotes RNA polymerase III assembly and activity.
    Chymkowitch P; Nguéa P A; Aanes H; Robertson J; Klungland A; Enserink JM
    Proc Natl Acad Sci U S A; 2017 Jan; 114(5):1039-1044. PubMed ID: 28096404
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Yeast symmetric arginine methyltransferase Hsl7 has a repressive role in transcription.
    Ryu HY; Duan R; Ahn SH
    Res Microbiol; 2019; 170(4-5):222-229. PubMed ID: 30660775
    [TBL] [Abstract][Full Text] [Related]  

  • 53. TLS and PRMT1 synergistically coactivate transcription at the survivin promoter through TLS arginine methylation.
    Du K; Arai S; Kawamura T; Matsushita A; Kurokawa R
    Biochem Biophys Res Commun; 2011 Jan; 404(4):991-6. PubMed ID: 21187067
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characterization of the Interaction between Arginine Methyltransferase Hmt1 and Its Substrate Npl3: Use of Multiple Cross-Linkers, Mass Spectrometric Approaches, and Software Platforms.
    Smith DL; Götze M; Bartolec TK; Hart-Smith G; Wilkins MR
    Anal Chem; 2018 Aug; 90(15):9101-9108. PubMed ID: 30004689
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The
    Law MJ; Finger MA
    G3 (Bethesda); 2017 Mar; 7(3):1001-1010. PubMed ID: 28143948
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Arginine methylation facilitates the nuclear export of hnRNP proteins.
    Shen EC; Henry MF; Weiss VH; Valentini SR; Silver PA; Lee MS
    Genes Dev; 1998 Mar; 12(5):679-91. PubMed ID: 9499403
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Regulation of tRNA synthesis by posttranslational modifications of RNA polymerase III subunits.
    Chymkowitch P; Enserink JM
    Biochim Biophys Acta Gene Regul Mech; 2018 Apr; 1861(4):310-319. PubMed ID: 29127063
    [TBL] [Abstract][Full Text] [Related]  

  • 58. MT-MAMS: Protein Methyltransferase Motif Analysis by Mass Spectrometry.
    Hamey JJ; Separovich RJ; Wilkins MR
    J Proteome Res; 2018 Oct; 17(10):3485-3491. PubMed ID: 30156103
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Repression of yeast RNA polymerase III by stress leads to ubiquitylation and proteasomal degradation of its largest subunit, C160.
    Leśniewska E; Cieśla M; Boguta M
    Biochim Biophys Acta Gene Regul Mech; 2019 Jan; 1862(1):25-34. PubMed ID: 30342998
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Crosstalk of Phosphorylation and Arginine Methylation in Disordered SRGG Repeats of Saccharomycescerevisiae Fibrillarin and Its Association with Nucleolar Localization.
    Smith DL; Erce MA; Lai YW; Tomasetig F; Hart-Smith G; Hamey JJ; Wilkins MR
    J Mol Biol; 2020 Jan; 432(2):448-466. PubMed ID: 31756331
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.