BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 31160424)

  • 21. Mitochondrial mechanisms of cold adaptation in cod (Gadus morhua L.) populations from different climatic zones.
    Lucassen M; Koschnick N; Eckerle LG; Pörtner HO
    J Exp Biol; 2006 Jul; 209(Pt 13):2462-71. PubMed ID: 16788029
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Response of branchial Na(+)/K(+) ATPase to changes in ambient temperature in Atlantic cod (Gadus morhua) and whiting (Merlangius merlangus).
    Michael K; Koschnick N; Pörtner HO; Lucassen M
    J Comp Physiol B; 2016 May; 186(4):461-70. PubMed ID: 26922791
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The acute and incremental thermal tolerance of Atlantic cod (Gadus morhua) families under normoxia and mild hypoxia.
    Zanuzzo FS; Bailey JA; Garber AF; Gamperl AK
    Comp Biochem Physiol A Mol Integr Physiol; 2019 Jul; 233():30-38. PubMed ID: 30930205
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Chapter 3. Effects of climate change and commercial fishing on Atlantic cod Gadus morhua.
    Mieszkowska N; Genner MJ; Hawkins SJ; Sims DW
    Adv Mar Biol; 2009; 56():213-73. PubMed ID: 19895976
    [TBL] [Abstract][Full Text] [Related]  

  • 25. ATP-induced temperature independence of hemoglobin-O2 affinity in heterothermic billfish.
    Weber RE; Campbell KL; Fago A; Malte H; Jensen FB
    J Exp Biol; 2010 May; 213(Pt 9):1579-85. PubMed ID: 20400643
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Thermal acclimation to 4 or 10 degrees C imparts minimal benefit on swimming performance in Atlantic cod (Gadus morhua L.).
    Lurman GJ; Bock CH; Poertner HO
    J Comp Physiol B; 2009 Jul; 179(5):623-33. PubMed ID: 19219615
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The crystal structure of haemoglobin from Atlantic cod.
    Helland R; Bjørkeng EK; Rothweiler U; Sydnes MO; Pampanin DM
    Acta Crystallogr F Struct Biol Commun; 2019 Aug; 75(Pt 8):537-542. PubMed ID: 31397324
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Differences in salinity tolerance and gene expression between two populations of Atlantic cod (Gadus morhua) in response to salinity stress.
    Larsen PF; Nielsen EE; Meier K; Olsvik PA; Hansen MM; Loeschcke V
    Biochem Genet; 2012 Jun; 50(5-6):454-66. PubMed ID: 22205502
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The impact of a moderate chronic temperature increase on spleen immune-relevant gene transcription depends on whether Atlantic cod (Gadus morhua) are stimulated with bacterial versus viral antigens.
    Hori TS; Gamperl AK; Nash G; Booman M; Barat A; Rise ML
    Genome; 2013 Oct; 56(10):567-76. PubMed ID: 24237337
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Productivity responses of a widespread marine piscivore, Gadus morhua, to oceanic thermal extremes and trends.
    Mantzouni I; MacKenzie BR
    Proc Biol Sci; 2010 Jun; 277(1689):1867-74. PubMed ID: 20147332
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Thermal growth potential of Atlantic cod by the end of the 21st century.
    Butzin M; Pörtner HO
    Glob Chang Biol; 2016 Dec; 22(12):4162-4168. PubMed ID: 27378512
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Adjustments of molecular key components of branchial ion and pH regulation in Atlantic cod (Gadus morhua) in response to ocean acidification and warming.
    Michael K; Kreiss CM; Hu MY; Koschnick N; Bickmeyer U; Dupont S; Pörtner HO; Lucassen M
    Comp Biochem Physiol B Biochem Mol Biol; 2016 Mar; 193():33-46. PubMed ID: 26688541
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.
    Meir JU; Milsom WK
    J Exp Biol; 2013 Jun; 216(Pt 12):2172-5. PubMed ID: 23470665
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Temperature and sex dependent effects on cardiac mitochondrial metabolism in Atlantic cod (Gadus morhua L.).
    Rodnick KJ; Gamperl AK; Nash GW; Syme DA
    J Therm Biol; 2014 Aug; 44():110-8. PubMed ID: 25086981
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Sea temperature effects on depth use and habitat selection in a marine fish community.
    Freitas C; Villegas-Ríos D; Moland E; Olsen EM
    J Anim Ecol; 2021 Jul; 90(7):1787-1800. PubMed ID: 33844859
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Genetic variation and functional properties of Atlantic cod hemoglobins: introducing a modified tonometric method for studying fragile hemoglobins.
    Brix O; Forås E; Strand I
    Comp Biochem Physiol A Mol Integr Physiol; 1998 Feb; 119(2):575-83. PubMed ID: 11249005
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Mechanistic insights into the effects of climate change on larval cod.
    Kristiansen T; Stock C; Drinkwater KF; Curchitser EN
    Glob Chang Biol; 2014 May; 20(5):1559-84. PubMed ID: 24343971
    [TBL] [Abstract][Full Text] [Related]  

  • 38. In situ cardiac performance of Atlantic cod (Gadus morhua) at cold temperatures: long-term acclimation, acute thermal challenge and the role of adrenaline.
    Lurman GJ; Petersen LH; Gamperl AK
    J Exp Biol; 2012 Nov; 215(Pt 22):4006-14. PubMed ID: 22899537
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hemoglobin Polymerization in Red Blood Cells of Marine Fishes: A Case of Adaptive Phenotypic Plasticity?
    Hunt von Herbing I; Schroeder-Spain K
    Biol Bull; 2019 Feb; 236(1):29-42. PubMed ID: 30707608
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Multidimensionality of behavioural phenotypes in Atlantic cod, Gadus morhua.
    Meager JJ; Fernö A; Skjæraasen JE; Järvi T; Rodewald P; Sverdrup G; Winberg S; Mayer I
    Physiol Behav; 2012 Jun; 106(4):462-70. PubMed ID: 22465310
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.