These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 31160426)
1. Upstroke-based acceleration and head stabilization are the norm for the wing-propelled swimming of alcid seabirds. Lapsansky AB; Tobalske BW J Exp Biol; 2019 Jul; 222(Pt 13):. PubMed ID: 31160426 [TBL] [Abstract][Full Text] [Related]
2. Swim speeds and stroke patterns in wing-propelled divers: a comparison among alcids and a penguin. Watanuki Y; Wanless S; Harris M; Lovvorn JR; Miyazaki M; Tanaka H; Sato K J Exp Biol; 2006 Apr; 209(Pt 7):1217-30. PubMed ID: 16547294 [TBL] [Abstract][Full Text] [Related]
3. Stroke patterns and regulation of swim speed and energy cost in free-ranging Brünnich's guillemots. Lovvorn JR; Watanuki Y; Kato A; Naito Y; Liggins GA J Exp Biol; 2004 Dec; 207(Pt 26):4679-95. PubMed ID: 15579562 [TBL] [Abstract][Full Text] [Related]
4. Kinematics of diving Atlantic puffins (Fratercula arctica L.): evidence for an active upstroke. Johansson LC; Aldrin BS J Exp Biol; 2002 Feb; 205(Pt 3):371-8. PubMed ID: 11854373 [TBL] [Abstract][Full Text] [Related]
5. Alcids 'fly' at efficient Strouhal numbers in both air and water but vary stroke velocity and angle. Lapsansky AB; Zatz D; Tobalske BW Elife; 2020 Jun; 9():. PubMed ID: 32602463 [TBL] [Abstract][Full Text] [Related]
6. Stroke and glide of wing-propelled divers: deep diving seabirds adjust surge frequency to buoyancy change with depth. Watanuki Y; Niizuma Y; Gabrielsen GW; Sato K; Naito Y Proc Biol Sci; 2003 Mar; 270(1514):483-8. PubMed ID: 12641902 [TBL] [Abstract][Full Text] [Related]
7. Mechanical versus physiological determinants of swimming speeds in diving Brünnich's guillemots. Lovvorn JR; Croll DA; Liggins GA J Exp Biol; 1999 Jul; 202(Pt 13):1741-52. PubMed ID: 10359677 [TBL] [Abstract][Full Text] [Related]
8. High flight costs, but low dive costs, in auks support the biomechanical hypothesis for flightlessness in penguins. Elliott KH; Ricklefs RE; Gaston AJ; Hatch SA; Speakman JR; Davoren GK Proc Natl Acad Sci U S A; 2013 Jun; 110(23):9380-4. PubMed ID: 23690614 [TBL] [Abstract][Full Text] [Related]
9. Osteological histology of the Pan-Alcidae (Aves, Charadriiformes): correlates of wing-propelled diving and flightlessness. Smith NA; Clarke JA Anat Rec (Hoboken); 2014 Feb; 297(2):188-99. PubMed ID: 24357466 [TBL] [Abstract][Full Text] [Related]
10. Kinematic and hydrodynamic analyses of turning manoeuvres in penguins: body banking and wing upstroke generate centripetal force. Harada N; Tanaka H J Exp Biol; 2022 Dec; 225(24):. PubMed ID: 36408785 [TBL] [Abstract][Full Text] [Related]
11. Wing inertia and whole-body acceleration: an analysis of instantaneous aerodynamic force production in cockatiels (Nymphicus hollandicus) flying across a range of speeds. Hedrick TL; Usherwood JR; Biewener AA J Exp Biol; 2004 Apr; 207(Pt 10):1689-702. PubMed ID: 15073202 [TBL] [Abstract][Full Text] [Related]
12. The effects of intense wing molt on diving in alcids and potential influences on the evolution of molt patterns. Bridge ES J Exp Biol; 2004 Aug; 207(Pt 17):3003-14. PubMed ID: 15277555 [TBL] [Abstract][Full Text] [Related]
13. Differences between upstroke and downstroke in swimming dolphins. Videler J; Kamermans P J Exp Biol; 1985 Nov; 119():265-74. PubMed ID: 4093758 [TBL] [Abstract][Full Text] [Related]
14. Regulation of stroke pattern and swim speed across a range of current velocities: diving by common eiders wintering in polynyas in the Canadian Arctic. Heath JP; Gilchrist HG; Ydenberg RC J Exp Biol; 2006 Oct; 209(Pt 20):3974-83. PubMed ID: 17023591 [TBL] [Abstract][Full Text] [Related]
15. Aerodynamic force generation and power requirements in forward flight in a fruit fly with modeled wing motion. Sun M; Wu JH J Exp Biol; 2003 Sep; 206(Pt 17):3065-83. PubMed ID: 12878674 [TBL] [Abstract][Full Text] [Related]
16. Kinematics and aerodynamics of avian upstrokes during slow flight. Crandell KE; Tobalske BW J Exp Biol; 2015 Aug; 218(Pt 16):2518-27. PubMed ID: 26089528 [TBL] [Abstract][Full Text] [Related]
18. Endocranial anatomy of the charadriiformes: sensory system variation and the evolution of wing-propelled diving. Smith NA; Clarke JA PLoS One; 2012; 7(11):e49584. PubMed ID: 23209585 [TBL] [Abstract][Full Text] [Related]
19. Kinematics and hydrodynamics analyses of swimming penguins: wing bending improves propulsion performance. Harada N; Oura T; Maeda M; Shen Y; Kikuchi DM; Tanaka H J Exp Biol; 2021 Nov; 224(21):. PubMed ID: 34553753 [TBL] [Abstract][Full Text] [Related]
20. Stroke frequency, but not swimming speed, is related to body size in free-ranging seabirds, pinnipeds and cetaceans. Sato K; Watanuki Y; Takahashi A; Miller PJ; Tanaka H; Kawabe R; Ponganis PJ; Handrich Y; Akamatsu T; Watanabe Y; Mitani Yo; Costa DP; Bost CA; Aoki K; Amano M; Trathan P; Shapiro A; Naito Y Proc Biol Sci; 2007 Feb; 274(1609):471-7. PubMed ID: 17476766 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]