These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
267 related articles for article (PubMed ID: 31160557)
1. Structural basis for substrate gripping and translocation by the ClpB AAA+ disaggregase. Rizo AN; Lin J; Gates SN; Tse E; Bart SM; Castellano LM; DiMaio F; Shorter J; Southworth DR Nat Commun; 2019 Jun; 10(1):2393. PubMed ID: 31160557 [TBL] [Abstract][Full Text] [Related]
2. Two-Step Activation Mechanism of the ClpB Disaggregase for Sequential Substrate Threading by the Main ATPase Motor. Deville C; Franke K; Mogk A; Bukau B; Saibil HR Cell Rep; 2019 Jun; 27(12):3433-3446.e4. PubMed ID: 31216466 [TBL] [Abstract][Full Text] [Related]
3. ATP hydrolysis-coupled peptide translocation mechanism of Yu H; Lupoli TJ; Kovach A; Meng X; Zhao G; Nathan CF; Li H Proc Natl Acad Sci U S A; 2018 Oct; 115(41):E9560-E9569. PubMed ID: 30257943 [TBL] [Abstract][Full Text] [Related]
4. Ratchet-like polypeptide translocation mechanism of the AAA+ disaggregase Hsp104. Gates SN; Yokom AL; Lin J; Jackrel ME; Rizo AN; Kendsersky NM; Buell CE; Sweeny EA; Mack KL; Chuang E; Torrente MP; Su M; Shorter J; Southworth DR Science; 2017 Jul; 357(6348):273-279. PubMed ID: 28619716 [TBL] [Abstract][Full Text] [Related]
5. Conserved distal loop residues in the Hsp104 and ClpB middle domain contact nucleotide-binding domain 2 and enable Hsp70-dependent protein disaggregation. Desantis ME; Sweeny EA; Snead D; Leung EH; Go MS; Gupta K; Wendler P; Shorter J J Biol Chem; 2014 Jan; 289(2):848-67. PubMed ID: 24280225 [TBL] [Abstract][Full Text] [Related]
6. Basic mechanism of the autonomous ClpG disaggregase. Katikaridis P; Römling U; Mogk A J Biol Chem; 2021; 296():100460. PubMed ID: 33639171 [TBL] [Abstract][Full Text] [Related]
7. Spiral architecture of the Hsp104 disaggregase reveals the basis for polypeptide translocation. Yokom AL; Gates SN; Jackrel ME; Mack KL; Su M; Shorter J; Southworth DR Nat Struct Mol Biol; 2016 Sep; 23(9):830-7. PubMed ID: 27478928 [TBL] [Abstract][Full Text] [Related]
8. Crystal structure of E. coli Hsp100 ClpB nucleotide-binding domain 1 (NBD1) and mechanistic studies on ClpB ATPase activity. Li J; Sha B J Mol Biol; 2002 May; 318(4):1127-37. PubMed ID: 12054807 [TBL] [Abstract][Full Text] [Related]
9. Bacterial and Yeast AAA+ Disaggregases ClpB and Hsp104 Operate through Conserved Mechanism Involving Cooperation with Hsp70. Kummer E; Szlachcic A; Franke KB; Ungelenk S; Bukau B; Mogk A J Mol Biol; 2016 Oct; 428(21):4378-4391. PubMed ID: 27616763 [TBL] [Abstract][Full Text] [Related]
10. Structural and mechanistic insights into Hsp104 function revealed by synchrotron X-ray footprinting. Sweeny EA; Tariq A; Gurpinar E; Go MS; Sochor MA; Kan ZY; Mayne L; Englander SW; Shorter J J Biol Chem; 2020 Feb; 295(6):1517-1538. PubMed ID: 31882541 [TBL] [Abstract][Full Text] [Related]
11. Processive extrusion of polypeptide loops by a Hsp100 disaggregase. Avellaneda MJ; Franke KB; Sunderlikova V; Bukau B; Mogk A; Tans SJ Nature; 2020 Feb; 578(7794):317-320. PubMed ID: 31996849 [TBL] [Abstract][Full Text] [Related]
12. DnaK chaperone-dependent disaggregation by caseinolytic peptidase B (ClpB) mutants reveals functional overlap in the N-terminal domain and nucleotide-binding domain-1 pore tyrosine. Doyle SM; Hoskins JR; Wickner S J Biol Chem; 2012 Aug; 287(34):28470-9. PubMed ID: 22745126 [TBL] [Abstract][Full Text] [Related]
13. Motor mechanism for protein threading through Hsp104. Wendler P; Shorter J; Snead D; Plisson C; Clare DK; Lindquist S; Saibil HR Mol Cell; 2009 Apr; 34(1):81-92. PubMed ID: 19362537 [TBL] [Abstract][Full Text] [Related]
14. Poly-L-lysine enhances the protein disaggregation activity of ClpB. Strub C; Schlieker C; Bukau B; Mogk A FEBS Lett; 2003 Oct; 553(1-2):125-30. PubMed ID: 14550559 [TBL] [Abstract][Full Text] [Related]
15. Roles of individual domains and conserved motifs of the AAA+ chaperone ClpB in oligomerization, ATP hydrolysis, and chaperone activity. Mogk A; Schlieker C; Strub C; Rist W; Weibezahn J; Bukau B J Biol Chem; 2003 May; 278(20):17615-24. PubMed ID: 12624113 [TBL] [Abstract][Full Text] [Related]
16. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregase. Shorter J; Southworth DR Cold Spring Harb Perspect Biol; 2019 Aug; 11(8):. PubMed ID: 30745294 [TBL] [Abstract][Full Text] [Related]
17. Walker-A threonine couples nucleotide occupancy with the chaperone activity of the AAA+ ATPase ClpB. Nagy M; Wu HC; Liu Z; Kedzierska-Mieszkowska S; Zolkiewski M Protein Sci; 2009 Feb; 18(2):287-93. PubMed ID: 19177562 [TBL] [Abstract][Full Text] [Related]
18. Single-molecule FRET probes allosteric effects on protein-translocating pore loops of a AAA+ machine. Iljina M; Mazal H; Dayananda A; Zhang Z; Stan G; Riven I; Haran G Biophys J; 2024 Feb; 123(3):374-388. PubMed ID: 38196191 [TBL] [Abstract][Full Text] [Related]
19. Functional analysis of proposed substrate-binding residues of Hsp104. Howard MK; Sohn BS; von Borcke J; Xu A; Jackrel ME PLoS One; 2020; 15(3):e0230198. PubMed ID: 32155221 [TBL] [Abstract][Full Text] [Related]
20. ClpB N-terminal domain plays a regulatory role in protein disaggregation. Rosenzweig R; Farber P; Velyvis A; Rennella E; Latham MP; Kay LE Proc Natl Acad Sci U S A; 2015 Dec; 112(50):E6872-81. PubMed ID: 26621746 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]