These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

182 related articles for article (PubMed ID: 31160619)

  • 1. An electrical characterisation methodology for identifying the switching mechanism in TiO
    Michalas L; Stathopoulos S; Khiat A; Prodromakis T
    Sci Rep; 2019 Jun; 9(1):8168. PubMed ID: 31160619
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of electrode materials on resistive switching behaviour of NbO
    Leonetti G; Fretto M; Pirri FC; De Leo N; Valov I; Milano G
    Sci Rep; 2023 Oct; 13(1):17003. PubMed ID: 37813937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the Coexistence of Two Bipolar Resistive Switching Modes with Opposite Polarity in Pt/TiO
    Zhang H; Yoo S; Menzel S; Funck C; Cüppers F; Wouters DJ; Hwang CS; Waser R; Hoffmann-Eifert S
    ACS Appl Mater Interfaces; 2018 Sep; 10(35):29766-29778. PubMed ID: 30088755
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-Level Resistive Switching in SnSe/SrTiO
    Ho TL; Ding K; Lyapunov N; Suen CH; Wong LW; Zhao J; Yang M; Zhou X; Dai JY
    Nanomaterials (Basel); 2022 Jun; 12(13):. PubMed ID: 35807964
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the Resistive Switching Mechanisms and Rectification Characteristics of HfO₂-Based Resistive Random Access Memory Devices with Different Electrode Materials.
    Khorolsuren B; Lu S; Sun C; Jin F; Mo W; Song J; Dong K
    J Nanosci Nanotechnol; 2020 Oct; 20(10):6489-6494. PubMed ID: 32385003
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Uniform self-rectifying resistive random-access memory based on an MXene-TiO
    Zang C; Li B; Sun Y; Feng S; Wang XZ; Wang X; Sun DM
    Nanoscale Adv; 2022 Nov; 4(23):5062-5069. PubMed ID: 36504734
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pt/WO3/FTO memristive devices with recoverable pseudo-electroforming for time-delay switches in neuromorphic computing.
    Shi T; Yin XB; Yang R; Guo X
    Phys Chem Chem Phys; 2016 Apr; 18(14):9338-43. PubMed ID: 26996120
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Experimental and Modeling Study of Metal-Insulator Interfaces to Control the Electronic Transport in Single Nanowire Memristive Devices.
    Milano G; Miranda E; Fretto M; Valov I; Ricciardi C
    ACS Appl Mater Interfaces; 2022 Nov; 14(47):53027-53037. PubMed ID: 36396122
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-rectifying bipolar resistive switching memory based on an iron oxide and graphene oxide hybrid.
    Oh SI; Rani JR; Hong SM; Jang JH
    Nanoscale; 2017 Oct; 9(40):15314-15322. PubMed ID: 28820212
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chemical Nature of Electrode and the Switching Response of RF-Sputtered NbO
    Aziz J; Kim H; Rehman S; Khan MF; Kim DK
    Nanomaterials (Basel); 2020 Oct; 10(11):. PubMed ID: 33138226
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A Unified Current-Voltage Model for Metal Oxide-Based Resistive Random-Access Memory.
    Chung H; Shin H; Park J; Sun W
    Materials (Basel); 2022 Dec; 16(1):. PubMed ID: 36614520
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nanoscale resistive switching devices: mechanisms and modeling.
    Yang Y; Lu W
    Nanoscale; 2013 Nov; 5(21):10076-92. PubMed ID: 24057010
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the Resistive Switching Behaviors of Top Electrode (Au, Cu, and Al)-Dependent TiO
    Yu Y; Ding Z; Ren Y; Wang X; Quan H; Jia H; Jiang C
    ACS Omega; 2024 Jun; 9(23):24601-24609. PubMed ID: 38882132
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Schottky Emission Distance and Barrier Height Properties of Bipolar Switching Gd:SiOx RRAM Devices under Different Oxygen Concentration Environments.
    Chen KH; Tsai TM; Cheng CM; Huang SJ; Chang KC; Liang SP; Young TF
    Materials (Basel); 2017 Dec; 11(1):. PubMed ID: 29283368
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gradual electroforming and memristive switching in Pt/CuO(x)/Si/Pt systems.
    Wei LL; Shang DS; Sun JR; Lee SB; Sun ZG; Shen BG
    Nanotechnology; 2013 Aug; 24(32):325202. PubMed ID: 23867151
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Key concepts behind forming-free resistive switching incorporated with rectifying transport properties.
    Shuai Y; Ou X; Luo W; Mücklich A; Bürger D; Zhou S; Wu C; Chen Y; Zhang W; Helm M; Mikolajick T; Schmidt OG; Schmidt H
    Sci Rep; 2013; 3():2208. PubMed ID: 23860408
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrode-induced digital-to-analog resistive switching in TaO x -based RRAM devices.
    Li X; Wu H; Bin Gao ; Wu W; Wu D; Deng N; Cai J; Qian H
    Nanotechnology; 2016 Jul; 27(30):305201. PubMed ID: 27302281
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of ion transport phenomena in memristive double barrier devices.
    Dirkmann S; Hansen M; Ziegler M; Kohlstedt H; Mussenbrock T
    Sci Rep; 2016 Oct; 6():35686. PubMed ID: 27762294
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of Electrodes on the Switching Behavior of Strontium Titanate Nickelate Resistive Random Access Memory.
    Lee KJ; Wang LW; Chiang TK; Wang YH
    Materials (Basel); 2015 Oct; 8(10):7191-7198. PubMed ID: 28793630
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Physics-based modeling approaches of resistive switching devices for memory and in-memory computing applications.
    Ielmini D; Milo V
    J Comput Electron; 2017; 16(4):1121-1143. PubMed ID: 31997981
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.