BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 31160636)

  • 1. Integrative Analysis of Somatic Mutations in Non-coding Regions Altering RNA Secondary Structures in Cancer Genomes.
    He F; Wei R; Zhou Z; Huang L; Wang Y; Tang J; Zou Y; Shi L; Gu X; Davis MJ; Su Z
    Sci Rep; 2019 Jun; 9(1):8205. PubMed ID: 31160636
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CNCDatabase: a database of non-coding cancer drivers.
    Liu EM; Martinez-Fundichely A; Bollapragada R; Spiewack M; Khurana E
    Nucleic Acids Res; 2021 Jan; 49(D1):D1094-D1101. PubMed ID: 33095860
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The potential of the riboSNitch in personalized medicine.
    Solem AC; Halvorsen M; Ramos SB; Laederach A
    Wiley Interdiscip Rev RNA; 2015; 6(5):517-32. PubMed ID: 26115028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Predicting functional riboSNitches in the context of alternative splicing.
    G R; Mitra A; Pk V
    Gene; 2022 Aug; 837():146694. PubMed ID: 35738445
    [TBL] [Abstract][Full Text] [Related]  

  • 5. RNA Secondary Structure Alteration Caused by Single Nucleotide Variants.
    Kawaguchi RK; Kiryu H
    Methods Mol Biol; 2023; 2586():107-120. PubMed ID: 36705901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Detecting riboSNitches with RNA folding algorithms: a genome-wide benchmark.
    Corley M; Solem A; Qu K; Chang HY; Laederach A
    Nucleic Acids Res; 2015 Feb; 43(3):1859-68. PubMed ID: 25618847
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome Sequencing and RNA-Motif Analysis Reveal Novel Damaging Noncoding Mutations in Human Tumors.
    Singh B; Trincado JL; Tatlow PJ; Piccolo SR; Eyras E
    Mol Cancer Res; 2018 Jul; 16(7):1112-1124. PubMed ID: 29592900
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transcriptome-wide analysis of UTRs in non-small cell lung cancer reveals cancer-related genes with SNV-induced changes on RNA secondary structure and miRNA target sites.
    Sabarinathan R; Wenzel A; Novotny P; Tang X; Kalari KR; Gorodkin J
    PLoS One; 2014; 9(1):e82699. PubMed ID: 24416147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Experimental demonstration and pan-structurome prediction of climate-associated riboSNitches in Arabidopsis.
    Ferrero-Serrano Á; Sylvia MM; Forstmeier PC; Olson AJ; Ware D; Bevilacqua PC; Assmann SM
    Genome Biol; 2022 Apr; 23(1):101. PubMed ID: 35440059
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Disease-associated mutations that alter the RNA structural ensemble.
    Halvorsen M; Martin JS; Broadaway S; Laederach A
    PLoS Genet; 2010 Aug; 6(8):e1001074. PubMed ID: 20808897
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cancer-associated noncoding mutations affect RNA G-quadruplex-mediated regulation of gene expression.
    Zeraati M; Moye AL; Wong JWH; Perera D; Cowley MJ; Christ DU; Bryan TM; Dinger ME
    Sci Rep; 2017 Apr; 7(1):708. PubMed ID: 28386116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping of conserved RNA secondary structures predicts thousands of functional noncoding RNAs in the human genome.
    Washietl S; Hofacker IL; Lukasser M; Hüttenhofer A; Stadler PF
    Nat Biotechnol; 2005 Nov; 23(11):1383-90. PubMed ID: 16273071
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Identification and analysis of RNA structural disruptions induced by single nucleotide variants using Riprap and RiboSNitchDB.
    Lin J; Chen Y; Zhang Y; Ouyang Z
    NAR Genom Bioinform; 2020 Sep; 2(3):lqaa057. PubMed ID: 33575608
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Conserved secondary structures in Aspergillus.
    McGuire AM; Galagan JE
    PLoS One; 2008 Jul; 3(7):e2812. PubMed ID: 18665251
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Classification of RNA structure change by 'gazing' at experimental data.
    Woods CT; Laederach A
    Bioinformatics; 2017 Jun; 33(11):1647-1655. PubMed ID: 28130241
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Allele-specific SHAPE-MaP assessment of the effects of somatic variation and protein binding on mRNA structure.
    Lackey L; Coria A; Woods C; McArthur E; Laederach A
    RNA; 2018 Apr; 24(4):513-528. PubMed ID: 29317542
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural effects of linkage disequilibrium on the transcriptome.
    Martin JS; Halvorsen M; Davis-Neulander L; Ritz J; Gopinath C; Beauregard A; Laederach A
    RNA; 2012 Jan; 18(1):77-87. PubMed ID: 22109839
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of coding and non-coding mutational hotspots in cancer genomes.
    Piraino SW; Furney SJ
    BMC Genomics; 2017 Jan; 18(1):17. PubMed ID: 28056774
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In silico whole-genome screening for cancer-related single-nucleotide polymorphisms located in human mRNA untranslated regions.
    Aouacheria A; Navratil V; López-Pérez R; Gutiérrez NC; Churkin A; Barash D; Mouchiroud D; Gautier C
    BMC Genomics; 2007 Jan; 8():2. PubMed ID: 17201911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dark matter of the cancer genome: aberrations in regulatory elements, untranslated regions, splice sites, non-coding RNA and synonymous mutations.
    Diederichs S; Bartsch L; Berkmann JC; Fröse K; Heitmann J; Hoppe C; Iggena D; Jazmati D; Karschnia P; Linsenmeier M; Maulhardt T; Möhrmann L; Morstein J; Paffenholz SV; Röpenack P; Rückert T; Sandig L; Schell M; Steinmann A; Voss G; Wasmuth J; Weinberger ME; Wullenkord R
    EMBO Mol Med; 2016 May; 8(5):442-57. PubMed ID: 26992833
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.