These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
162 related articles for article (PubMed ID: 31160654)
1. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Tan Y; Zhang J; Sun Y; Tong Z; Peng C; Chang L; Guo A; Wang X Sci Rep; 2019 Jun; 9(1):8219. PubMed ID: 31160654 [TBL] [Abstract][Full Text] [Related]
2. Proteomic analysis of phytase transgenic and non-transgenic maize seeds. Tan Y; Tong Z; Yang Q; Sun Y; Jin X; Peng C; Guo A; Wang X Sci Rep; 2017 Aug; 7(1):9246. PubMed ID: 28835691 [TBL] [Abstract][Full Text] [Related]
3. Proteomics as a complementary tool for identifying unintended side effects occurring in transgenic maize seeds as a result of genetic modifications. Zolla L; Rinalducci S; Antonioli P; Righetti PG J Proteome Res; 2008 May; 7(5):1850-61. PubMed ID: 18393457 [TBL] [Abstract][Full Text] [Related]
4. Transgenic maize plants expressing a fungal phytase gene. Chen R; Xue G; Chen P; Yao B; Yang W; Ma Q; Fan Y; Zhao Z; Tarczynski MC; Shi J Transgenic Res; 2008 Aug; 17(4):633-43. PubMed ID: 17932782 [TBL] [Abstract][Full Text] [Related]
5. Metabolic changes in transgenic maize mature seeds over-expressing the Aspergillus niger phyA2. Rao J; Yang L; Guo J; Quan S; Chen G; Zhao X; Zhang D; Shi J Plant Cell Rep; 2016 Feb; 35(2):429-37. PubMed ID: 26581949 [TBL] [Abstract][Full Text] [Related]
6. Comparative Proteomics and Physiological Analyses Reveal Important Maize Filling-Kernel Drought-Responsive Genes and Metabolic Pathways. Wang X; Zenda T; Liu S; Liu G; Jin H; Dai L; Dong A; Yang Y; Duan H Int J Mol Sci; 2019 Jul; 20(15):. PubMed ID: 31370198 [TBL] [Abstract][Full Text] [Related]
7. Digital gene expression analysis of mature seeds of transgenic maize overexpressing Aspergillus niger phyA2 and its non-transgenic counterpart. Rao J; Yang L; Wang C; Zhang D; Shi J GM Crops Food; 2013; 4(2):98-108. PubMed ID: 23836108 [TBL] [Abstract][Full Text] [Related]
8. Endosperm-specific co-expression of recombinant soybean ferritin and Aspergillus phytase in maize results in significant increases in the levels of bioavailable iron. Drakakaki G; Marcel S; Glahn RP; Lund EK; Pariagh S; Fischer R; Christou P; Stoger E Plant Mol Biol; 2005 Dec; 59(6):869-80. PubMed ID: 16307363 [TBL] [Abstract][Full Text] [Related]
9. Proteomic analysis of the seeds of transgenic rice lines and the corresponding nongenetically modified isogenic variety. Liu W; Chen H; Li L; Dong M; Zhang Z; Wan Y; Jin W J Sci Food Agric; 2021 Mar; 101(5):1869-1878. PubMed ID: 32898281 [TBL] [Abstract][Full Text] [Related]
10. The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene. Shi J; Wang H; Wu Y; Hazebroek J; Meeley RB; Ertl DS Plant Physiol; 2003 Feb; 131(2):507-15. PubMed ID: 12586875 [TBL] [Abstract][Full Text] [Related]
11. iTRAQ-based quantitative proteomic analysis reveals new metabolic pathways responding to chilling stress in maize seedlings. Wang X; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Xue C; Yuan Y J Proteomics; 2016 Sep; 146():14-24. PubMed ID: 27321579 [TBL] [Abstract][Full Text] [Related]
12. Comparison of two GM maize varieties with a near-isogenic non-GM variety using transcriptomics, proteomics and metabolomics. Barros E; Lezar S; Anttonen MJ; van Dijk JP; Röhlig RM; Kok EJ; Engel KH Plant Biotechnol J; 2010 May; 8(4):436-51. PubMed ID: 20132517 [TBL] [Abstract][Full Text] [Related]
13. Integrated proteomics and metabolomics analysis of transgenic and gene-stacked maize line seeds. Liu W; Zhao H; Miao C; Jin W GM Crops Food; 2021 Jan; 12(1):361-375. PubMed ID: 34097556 [TBL] [Abstract][Full Text] [Related]
14. iTRAQ-Based Quantitative Proteomic Analysis of Embryogenic and Non-embryogenic Calli Derived from a Maize ( Liu B; Shan X; Wu Y; Su S; Li S; Liu H; Han J; Yuan Y Int J Mol Sci; 2018 Dec; 19(12):. PubMed ID: 30545080 [TBL] [Abstract][Full Text] [Related]
15. 2-DE-based proteomic analysis of protein changes associated with etiolated mesocotyl growth in Zea mays. Niu L; Wu Z; Liu H; Wu X; Wang W BMC Genomics; 2019 Oct; 20(1):758. PubMed ID: 31640549 [TBL] [Abstract][Full Text] [Related]
16. Seed-specific expression of the lysine-rich protein gene sb401 significantly increases both lysine and total protein content in maize seeds. Yu J; Peng P; Zhang X; Zhao Q; Zhu D; Sun X; Liu J; Ao G Food Nutr Bull; 2005 Dec; 26(4):427-31. PubMed ID: 16465991 [TBL] [Abstract][Full Text] [Related]
17. Cloning and characterization of a cDNA encoding a maize seedling phytase. Maugenest S; Martinez I; Lescure AM Biochem J; 1997 Mar; 322 ( Pt 2)(Pt 2):511-7. PubMed ID: 9065771 [TBL] [Abstract][Full Text] [Related]
18. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety. Tan Y; Yi X; Wang L; Peng C; Sun Y; Wang D; Zhang J; Guo A; Wang X Front Plant Sci; 2016; 7():1211. PubMed ID: 27582747 [TBL] [Abstract][Full Text] [Related]
19. Maize acetylcholinesterase is a positive regulator of heat tolerance in plants. Yamamoto K; Sakamoto H; Momonoki YS J Plant Physiol; 2011 Nov; 168(16):1987-92. PubMed ID: 21757255 [TBL] [Abstract][Full Text] [Related]