BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

646 related articles for article (PubMed ID: 31160817)

  • 1. Spinal cord repair: advances in biology and technology.
    Courtine G; Sofroniew MV
    Nat Med; 2019 Jun; 25(6):898-908. PubMed ID: 31160817
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Leveraging biomedical informatics for assessing plasticity and repair in primate spinal cord injury.
    Nielson JL; Haefeli J; Salegio EA; Liu AW; Guandique CF; Stück ED; Hawbecker S; Moseanko R; Strand SC; Zdunowski S; Brock JH; Roy RR; Rosenzweig ES; Nout-Lomas YS; Courtine G; Havton LA; Steward O; Reggie Edgerton V; Tuszynski MH; Beattie MS; Bresnahan JC; Ferguson AR
    Brain Res; 2015 Sep; 1619():124-38. PubMed ID: 25451131
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair.
    Fan C; Li X; Xiao Z; Zhao Y; Liang H; Wang B; Han S; Li X; Xu B; Wang N; Liu S; Xue W; Dai J
    Acta Biomater; 2017 Mar; 51():304-316. PubMed ID: 28069497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Scaffold-facilitated locomotor improvement post complete spinal cord injury: Motor axon regeneration versus endogenous neuronal relay formation.
    Li X; Liu D; Xiao Z; Zhao Y; Han S; Chen B; Dai J
    Biomaterials; 2019 Mar; 197():20-31. PubMed ID: 30639547
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From the Rodent Spinal Cord Injury Model to Human Application: Promises and Challenges.
    Dietz V; Schwab ME
    J Neurotrauma; 2017 May; 34(9):1826-1830. PubMed ID: 27286800
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomaterial Approaches to Enhancing Neurorestoration after Spinal Cord Injury: Strategies for Overcoming Inherent Biological Obstacles.
    Siebert JR; Eade AM; Osterhout DJ
    Biomed Res Int; 2015; 2015():752572. PubMed ID: 26491685
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Corticospinal Motor Circuit Plasticity After Spinal Cord Injury: Harnessing Neuroplasticity to Improve Functional Outcomes.
    Kazim SF; Bowers CA; Cole CD; Varela S; Karimov Z; Martinez E; Ogulnick JV; Schmidt MH
    Mol Neurobiol; 2021 Nov; 58(11):5494-5516. PubMed ID: 34341881
    [TBL] [Abstract][Full Text] [Related]  

  • 8. [Biomaterials engineering strategies for spinal cord regeneration: state of the art].
    Lis A; Szarek D; Laska J
    Polim Med; 2013; 43(2):59-80. PubMed ID: 24044287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Novel Strategies for Spinal Cord Regeneration.
    Costăchescu B; Niculescu AG; Dabija MG; Teleanu RI; Grumezescu AM; Eva L
    Int J Mol Sci; 2022 Apr; 23(9):. PubMed ID: 35562941
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Exercise after spinal cord injury as an agent for neuroprotection, regeneration and rehabilitation.
    Sandrow-Feinberg HR; Houlé JD
    Brain Res; 2015 Sep; 1619():12-21. PubMed ID: 25866284
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Restoring function after spinal cord injury: towards clinical translation of experimental strategies.
    Ramer LM; Ramer MS; Bradbury EJ
    Lancet Neurol; 2014 Dec; 13(12):1241-56. PubMed ID: 25453463
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Neurological aspects of spinal-cord repair: promises and challenges.
    Dietz V; Curt A
    Lancet Neurol; 2006 Aug; 5(8):688-94. PubMed ID: 16857574
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomaterial-based interventions for neuronal regeneration and functional recovery in rodent model of spinal cord injury: a systematic review.
    Krishna V; Konakondla S; Nicholas J; Varma A; Kindy M; Wen X
    J Spinal Cord Med; 2013 May; 36(3):174-90. PubMed ID: 23809587
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Respiration following spinal cord injury: evidence for human neuroplasticity.
    Hoh DJ; Mercier LM; Hussey SP; Lane MA
    Respir Physiol Neurobiol; 2013 Nov; 189(2):450-64. PubMed ID: 23891679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The translational landscape in spinal cord injury: focus on neuroplasticity and regeneration.
    Hutson TH; Di Giovanni S
    Nat Rev Neurol; 2019 Dec; 15(12):732-745. PubMed ID: 31728042
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of Rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury.
    Chen N; Zhou P; Liu X; Li J; Wan Y; Liu S; Wei F
    FASEB J; 2020 May; 34(5):6984-6998. PubMed ID: 32232913
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spinal cord clinical trials and the role for bioengineering.
    Wilcox JT; Cadotte D; Fehlings MG
    Neurosci Lett; 2012 Jun; 519(2):93-102. PubMed ID: 22366402
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Regenerative Therapies for Spinal Cord Injury.
    Ashammakhi N; Kim HJ; Ehsanipour A; Bierman RD; Kaarela O; Xue C; Khademhosseini A; Seidlits SK
    Tissue Eng Part B Rev; 2019 Dec; 25(6):471-491. PubMed ID: 31452463
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Applications of chitosan-based biomaterials: From preparation to spinal cord injury neuroprosthetic treatment.
    Xiang W; Cao H; Tao H; Jin L; Luo Y; Tao F; Jiang T
    Int J Biol Macromol; 2023 Mar; 230():123447. PubMed ID: 36708903
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Strategies to restore motor functions after spinal cord injury.
    Boulenguez P; Vinay L
    Curr Opin Neurobiol; 2009 Dec; 19(6):587-600. PubMed ID: 19896827
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 33.