These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

652 related articles for article (PubMed ID: 31160817)

  • 21. Biomaterials for spinal cord repair.
    Haggerty AE; Oudega M
    Neurosci Bull; 2013 Aug; 29(4):445-59. PubMed ID: 23864367
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Post-spinal cord injury astrocyte-mediated functional recovery in rats after intraspinal injection of the recombinant adenoviral vectors Ad5-VEGF and Ad5-ANG.
    Povysheva T; Shmarov M; Logunov D; Naroditsky B; Shulman I; Ogurcov S; Kolesnikov P; Islamov R; Chelyshev Y
    J Neurosurg Spine; 2017 Jul; 27(1):105-115. PubMed ID: 28452633
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Overground gait training promotes functional recovery and cortical neuroplasticity in an incomplete spinal cord injury model.
    Ilha J; Meireles A; de Freitas GR; do Espírito Santo CC; Machado-Pereira NAMM; Swarowsky A; Santos ARS
    Life Sci; 2019 Sep; 232():116627. PubMed ID: 31276690
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Allotransplantation of adult spinal cord tissues after complete transected spinal cord injury: Long-term survival and functional recovery in canines.
    Shen H; Wu S; Chen X; Xu B; Ma D; Zhao Y; Zhuang Y; Chen B; Hou X; Li J; Cao Y; Fu X; Tan J; Yin W; Li J; Meng L; Shi Y; Xiao Z; Jiang X; Dai J
    Sci China Life Sci; 2020 Dec; 63(12):1879-1886. PubMed ID: 32382980
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Perspectives on tissue-engineered nerve regeneration for the treatment of spinal cord injury.
    Kim MS; Lee HB
    Tissue Eng Part A; 2014 Jul; 20(13-14):1781-3. PubMed ID: 24568624
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Strategies to augment volitional and reflex function may improve locomotor capacity following incomplete spinal cord injury.
    Leech KA; Kim HE; Hornby TG
    J Neurophysiol; 2018 Mar; 119(3):894-903. PubMed ID: 29093168
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Recovery from a spinal cord injury: significance of compensation, neural plasticity, and repair.
    Curt A; Van Hedel HJ; Klaus D; Dietz V;
    J Neurotrauma; 2008 Jun; 25(6):677-85. PubMed ID: 18578636
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Deletion of the Fractalkine Receptor, CX3CR1, Improves Endogenous Repair, Axon Sprouting, and Synaptogenesis after Spinal Cord Injury in Mice.
    Freria CM; Hall JC; Wei P; Guan Z; McTigue DM; Popovich PG
    J Neurosci; 2017 Mar; 37(13):3568-3587. PubMed ID: 28264978
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Polymer scaffolds facilitate spinal cord injury repair.
    Zhang Q; Shi B; Ding J; Yan L; Thawani JP; Fu C; Chen X
    Acta Biomater; 2019 Apr; 88():57-77. PubMed ID: 30710714
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrical Stimulation as a Tool to Promote Plasticity of the Injured Spinal Cord.
    Jack AS; Hurd C; Martin J; Fouad K
    J Neurotrauma; 2020 Sep; 37(18):1933-1953. PubMed ID: 32438858
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biohybrids for spinal cord injury repair.
    Martínez-Ramos C; Doblado LR; Mocholi EL; Alastrue-Agudo A; Petidier MS; Giraldo E; Pradas MM; Moreno-Manzano V
    J Tissue Eng Regen Med; 2019 Mar; 13(3):509-521. PubMed ID: 30726582
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo cell fate reprogramming for spinal cord repair.
    Tai W; Zhang CL
    Curr Opin Genet Dev; 2023 Oct; 82():102090. PubMed ID: 37506560
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Restoration of sensorimotor functions after spinal cord injury.
    Dietz V; Fouad K
    Brain; 2014 Mar; 137(Pt 3):654-67. PubMed ID: 24103913
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Spinal cord injury: pathophysiology, treatment strategies, associated challenges, and future implications.
    Venkatesh K; Ghosh SK; Mullick M; Manivasagam G; Sen D
    Cell Tissue Res; 2019 Aug; 377(2):125-151. PubMed ID: 31065801
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From demyelination to remyelination: the road toward therapies for spinal cord injury.
    Papastefanaki F; Matsas R
    Glia; 2015 Jul; 63(7):1101-25. PubMed ID: 25731941
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The effects and potential mechanisms of locomotor training on improvements of functional recovery after spinal cord injury.
    Yu P; Zhang W; Liu Y; Sheng C; So KF; Zhou L; Zhu H
    Int Rev Neurobiol; 2019; 147():199-217. PubMed ID: 31607355
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Bioengineered strategies for spinal cord repair.
    Nomura H; Tator CH; Shoichet MS
    J Neurotrauma; 2006; 23(3-4):496-507. PubMed ID: 16629632
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Plasticity of the Injured Spinal Cord.
    Guérout N
    Cells; 2021 Jul; 10(8):. PubMed ID: 34440655
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The Neuroplastic and Therapeutic Potential of Spinal Interneurons in the Injured Spinal Cord.
    Zholudeva LV; Qiang L; Marchenko V; Dougherty KJ; Sakiyama-Elbert SE; Lane MA
    Trends Neurosci; 2018 Sep; 41(9):625-639. PubMed ID: 30017476
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Nanotechnology for the Treatment of Spinal Cord Injury.
    Zimmermann R; Vieira Alves Y; Sperling LE; Pranke P
    Tissue Eng Part B Rev; 2021 Aug; 27(4):353-365. PubMed ID: 33135599
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.