These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 31160968)

  • 1.
    Liu L; Yang H; Cai Y; Cao Q; Sun L; Wang Z; Li W; Liu G; Lee PW; Tang Y
    Toxicol Res (Camb); 2019 May; 8(3):341-352. PubMed ID: 31160968
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In silico prediction of acute chemical toxicity of biocides in marine crustaceans using machine learning.
    Krishnan R; Howard IS; Comber S; Jha AN
    Sci Total Environ; 2023 Aug; 887():164072. PubMed ID: 37268134
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Critical features identification for chemical chronic toxicity based on mechanistic forecast models.
    Wang X; Li F; Chen J; Teng Y; Ji C; Wu H
    Environ Pollut; 2022 Aug; 307():119584. PubMed ID: 35688391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. QSAR modelling study of the bioconcentration factor and toxicity of organic compounds to aquatic organisms using machine learning and ensemble methods.
    Ai H; Wu X; Zhang L; Qi M; Zhao Y; Zhao Q; Zhao J; Liu H
    Ecotoxicol Environ Saf; 2019 Sep; 179():71-78. PubMed ID: 31026752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In silico estimation of chemical aquatic toxicity on crustaceans using chemical category methods.
    Cao Q; Liu L; Yang H; Cai Y; Li W; Liu G; Lee PW; Tang Y
    Environ Sci Process Impacts; 2018 Sep; 20(9):1234-1243. PubMed ID: 30069560
    [TBL] [Abstract][Full Text] [Related]  

  • 6.
    Li F; Fan D; Wang H; Yang H; Li W; Tang Y; Liu G
    Toxicol Res (Camb); 2017 Nov; 6(6):831-842. PubMed ID: 30090546
    [TBL] [Abstract][Full Text] [Related]  

  • 7. In silico prediction of chemical toxicity on avian species using chemical category approaches.
    Zhang C; Cheng F; Sun L; Zhuang S; Li W; Liu G; Lee PW; Tang Y
    Chemosphere; 2015 Mar; 122():280-287. PubMed ID: 25532772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. In silico prediction of chemical reproductive toxicity using machine learning.
    Jiang C; Yang H; Di P; Li W; Tang Y; Liu G
    J Appl Toxicol; 2019 Jun; 39(6):844-854. PubMed ID: 30687929
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Implementing comprehensive machine learning models of multispecies toxicity assessment to improve regulation of organic compounds.
    He Y; Liu G; Hu S; Wang X; Jia J; Zhou H; Yan X
    J Hazard Mater; 2023 Sep; 458():131942. PubMed ID: 37390684
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In Silico Prediction of Chemical-Induced Hepatocellular Hypertrophy Using Molecular Descriptors.
    Ambe K; Ishihara K; Ochibe T; Ohya K; Tamura S; Inoue K; Yoshida M; Tohkin M
    Toxicol Sci; 2018 Apr; 162(2):667-675. PubMed ID: 29309657
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hazard of pharmaceuticals for aquatic environment: Prioritization by structural approaches and prediction of ecotoxicity.
    Sangion A; Gramatica P
    Environ Int; 2016 Oct; 95():131-43. PubMed ID: 27568576
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Predicting aquatic toxicities of chemical pesticides in multiple test species using nonlinear QSTR modeling approaches.
    Basant N; Gupta S; Singh KP
    Chemosphere; 2015 Nov; 139():246-55. PubMed ID: 26142614
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of chemical aquatic toxicity by multiple machine learning and deep learning approaches.
    Xu M; Yang H; Liu G; Tang Y; Li W
    J Appl Toxicol; 2022 Nov; 42(11):1766-1776. PubMed ID: 35653511
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Using Machine Learning to Predict Adverse Effects of Metallic Nanomaterials to Various Aquatic Organisms.
    Zhou Y; Wang Y; Peijnenburg W; Vijver MG; Balraadjsing S; Fan W
    Environ Sci Technol; 2023 Nov; 57(46):17786-17795. PubMed ID: 36730792
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Occurrence of neonicotinoids and fipronil in estuaries and their potential risks to aquatic invertebrates.
    Hano T; Ito K; Ohkubo N; Sakaji H; Watanabe A; Takashima K; Sato T; Sugaya T; Matsuki K; Onduka T; Ito M; Somiya R; Mochida K
    Environ Pollut; 2019 Sep; 252(Pt A):205-215. PubMed ID: 31151059
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Developing novel in silico prediction models for assessing chemical reproductive toxicity using the naïve Bayes classifier method.
    Zhang H; Shen C; Liu RZ; Mao J; Liu CT; Mu B
    J Appl Toxicol; 2020 Sep; 40(9):1198-1209. PubMed ID: 32207182
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ADMET evaluation in drug discovery: 15. Accurate prediction of rat oral acute toxicity using relevance vector machine and consensus modeling.
    Lei T; Li Y; Song Y; Li D; Sun H; Hou T
    J Cheminform; 2016; 8():6. PubMed ID: 26839598
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of aquatic toxicity of chemical mixtures by the QSAR approach using 2D structural descriptors.
    Chatterjee M; Roy K
    J Hazard Mater; 2021 Apr; 408():124936. PubMed ID: 33387719
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the reproductive toxicity of chemicals using ensemble learning methods and molecular fingerprints.
    Feng H; Zhang L; Li S; Liu L; Yang T; Yang P; Zhao J; Arkin IT; Liu H
    Toxicol Lett; 2021 Apr; 340():4-14. PubMed ID: 33421549
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Quantitative multi-species toxicity modeling: Does a multi-species, machine learning model provide better performance than a single-species model for the evaluation of acute aquatic toxicity by organic pollutants?
    Gajewicz-Skretna A; Wyrzykowska E; Gromelski M
    Sci Total Environ; 2023 Feb; 861():160590. PubMed ID: 36473653
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.