These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 31161322)

  • 61. Automated real-time detection of drug-resistant Mycobacterium tuberculosis on a lab-on-a-disc by Recombinase Polymerase Amplification.
    Law ILG; Loo JFC; Kwok HC; Yeung HY; Leung CCH; Hui M; Wu SY; Chan HS; Kwan YW; Ho HP; Kong SK
    Anal Biochem; 2018 Mar; 544():98-107. PubMed ID: 29305096
    [TBL] [Abstract][Full Text] [Related]  

  • 62. An optimal design method for preventing air bubbles in high-temperature microfluidic devices.
    Nakayama T; Hiep HM; Furui S; Yonezawa Y; Saito M; Takamura Y; Tamiya E
    Anal Bioanal Chem; 2010 Jan; 396(1):457-64. PubMed ID: 19841913
    [TBL] [Abstract][Full Text] [Related]  

  • 63. A circular ferrofluid driven microchip for rapid polymerase chain reaction.
    Sun Y; Kwok YC; Nguyen NT
    Lab Chip; 2007 Aug; 7(8):1012-7. PubMed ID: 17653343
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Microfluidic DNA amplification--a review.
    Zhang Y; Ozdemir P
    Anal Chim Acta; 2009 Apr; 638(2):115-25. PubMed ID: 19327449
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Continuous-flow, microfluidic, qRT-PCR system for RNA virus detection.
    Fernández-Carballo BL; McBeth C; McGuiness I; Kalashnikov M; Baum C; Borrós S; Sharon A; Sauer-Budge AF
    Anal Bioanal Chem; 2018 Jan; 410(1):33-43. PubMed ID: 29116351
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Application of an asymmetric helical tube reactor for fast identification of gene transcripts of pathogenic viruses by micro flow-through PCR.
    Hartung R; Brösing A; Sczcepankiewicz G; Liebert U; Häfner N; Dürst M; Felbel J; Lassner D; Köhler JM
    Biomed Microdevices; 2009 Jun; 11(3):685-92. PubMed ID: 19169825
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A low-cost PCR instrument for molecular disease diagnostics based on customized printed circuit board heaters.
    de Oliveira VK; Camargo BD; Alexandrino F; Morello LG; Marchini FK; Aoki MN; Blanes L
    Biomed Microdevices; 2021 Apr; 23(2):24. PubMed ID: 33855638
    [TBL] [Abstract][Full Text] [Related]  

  • 68. On-chip pressure injection for integration of infrared-mediated DNA amplification with electrophoretic separation.
    Easley CJ; Karlinsey JM; Landers JP
    Lab Chip; 2006 May; 6(5):601-10. PubMed ID: 16652175
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Rapid PCR thermocycling using microscale thermal convection.
    Muddu R; Hassan YA; Ugaz VM
    J Vis Exp; 2011 Mar; (49):. PubMed ID: 21403639
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Single cell on-chip whole genome amplification via micropillar arrays for reduced amplification bias.
    Tian HC; Benitez JJ; Craighead HG
    PLoS One; 2018; 13(2):e0191520. PubMed ID: 29432426
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Instrument for Real-Time Digital Nucleic Acid Amplification on Custom Microfluidic Devices.
    Selck DA; Ismagilov RF
    PLoS One; 2016; 11(10):e0163060. PubMed ID: 27760148
    [TBL] [Abstract][Full Text] [Related]  

  • 72. A review on continuous-flow microfluidic PCR in droplets: Advances, challenges and future.
    Zhang Y; Jiang HR
    Anal Chim Acta; 2016 Mar; 914():7-16. PubMed ID: 26965323
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Integrated sample-to-detection chip for nucleic acid test assays.
    Prakash R; Pabbaraju K; Wong S; Tellier R; Kaler KV
    Biomed Microdevices; 2016 Jun; 18(3):44. PubMed ID: 27165104
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Loop-mediated isothermal amplification in disposable polyester-toner microdevices.
    de Oliveira KG; Borba JC; Bailão AM; de Almeida Soares CM; Carrilho E; Duarte GRM
    Anal Biochem; 2017 Oct; 534():70-77. PubMed ID: 28716373
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Digital quantification of DNA via isothermal amplification on a self-driven microfluidic chip featuring hydrophilic film-coated polydimethylsiloxane.
    Ma YD; Chang WH; Luo K; Wang CH; Liu SY; Yen WH; Lee GB
    Biosens Bioelectron; 2018 Jan; 99():547-554. PubMed ID: 28823979
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Integration of isothermal amplification methods in microfluidic devices: Recent advances.
    Giuffrida MC; Spoto G
    Biosens Bioelectron; 2017 Apr; 90():174-186. PubMed ID: 27888686
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Neuro-genetic optimization of temperature control for a continuous flow polymerase chain reaction microdevice.
    Lee HW; Arunasalam P; Laratta WP; Seetharamu KN; Azid IA
    J Biomech Eng; 2007 Aug; 129(4):540-7. PubMed ID: 17655475
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A scalable and modular lab-on-a-chip genetic analysis instrument.
    Kaigala GV; Behnam M; Bidulock AC; Bargen C; Johnstone RW; Elliott DG; Backhouse CJ
    Analyst; 2010 Jul; 135(7):1606-17. PubMed ID: 20369214
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Microfluidic Devices for Forensic DNA Analysis: A Review.
    Bruijns B; van Asten A; Tiggelaar R; Gardeniers H
    Biosensors (Basel); 2016 Aug; 6(3):. PubMed ID: 27527231
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Gene transcript amplification from cell lysates in continuous-flow microfluidic devices.
    Gonzalez A; Ciobanu D; Sayers M; Sirr N; Dalton T; Davies M
    Biomed Microdevices; 2007 Oct; 9(5):729-36. PubMed ID: 17492382
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.