These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

261 related articles for article (PubMed ID: 31161351)

  • 21. Advanced modeling strategy for the analysis of heart valve leaflet tissue mechanics using high-order finite element method.
    Mohammadi H; Bahramian F; Wan W
    Med Eng Phys; 2009 Nov; 31(9):1110-7. PubMed ID: 19773193
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Left-ventricular shape determines intramyocardial mechanical heterogeneity.
    Choi HF; Rademakers FE; Claus P
    Am J Physiol Heart Circ Physiol; 2011 Dec; 301(6):H2351-61. PubMed ID: 21949116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. An anatomical heart model with applications to myocardial activation and ventricular mechanics.
    Hunter PJ; Nielsen PM; Smaill BH; LeGrice IJ; Hunter IW
    Crit Rev Biomed Eng; 1992; 20(5-6):403-26. PubMed ID: 1486783
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solving the ECG forward problem by means of a meshless finite element method.
    Li ZS; Zhu SA; He B
    Phys Med Biol; 2007 Jul; 52(13):N287-96. PubMed ID: 17664567
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Adaptation of a rabbit myocardium material model for use in a canine left ventricle simulation study.
    Doyle MG; Tavoularis S; Bourgault Y
    J Biomech Eng; 2010 Apr; 132(4):041006. PubMed ID: 20387969
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Smoothed particle hydrodynamics based FSI simulation of the native and mechanical heart valves in a patient-specific aortic model.
    Laha S; Fourtakas G; Das PK; Keshmiri A
    Sci Rep; 2024 Mar; 14(1):6762. PubMed ID: 38514703
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Improving the stability of cardiac mechanical simulations.
    Land S; Niederer SA; Lamata P; Smith NP
    IEEE Trans Biomed Eng; 2015 Mar; 62(3):939-947. PubMed ID: 25474804
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Reduced left ventricular dynamics modeling based on a cylindrical assumption.
    Genet M; Diaz J; Chapelle D; Moireau P
    Int J Numer Method Biomed Eng; 2023 Nov; 39(11):e3711. PubMed ID: 37203282
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Estimation of cardiac hyperelastic material properties from MRI tissue tagging and diffusion tensor imaging.
    Augenstein KF; Cowan BR; LeGrice IJ; Young AA
    Med Image Comput Comput Assist Interv; 2006; 9(Pt 1):628-35. PubMed ID: 17354943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structural finite deformation model of the left ventricle during diastole and systole.
    Nevo E; Lanir Y
    J Biomech Eng; 1989 Nov; 111(4):342-9. PubMed ID: 2486374
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Implicit Partitioned Cardiovascular Fluid-Structure Interaction of the Heart Cycle Using Non-newtonian Fluid Properties and Orthotropic Material Behavior.
    Muehlhausen MP; Janoske U; Oertel H
    Cardiovasc Eng Technol; 2015 Mar; 6(1):8-18. PubMed ID: 26577098
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Smoothed particle hydrodynamics simulation of biphasic soft tissue and its medical applications.
    Chang YJ; Benharash P; Dutson EP; Eldredge JD
    Med Biol Eng Comput; 2021 Jan; 59(1):227-242. PubMed ID: 33415698
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nonlinear incompressible finite element for simulating loading of cardiac tissue--Part I: Two dimensional formulation for thin myocardial strips.
    Horowitz A; Sheinman I; Lanir Y; Perl M; Sideman S
    J Biomech Eng; 1988 Feb; 110(1):57-61. PubMed ID: 3347024
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preconditioned augmented Lagrangian formulation for nearly incompressible cardiac mechanics.
    Campos JO; Dos Santos RW; Sundnes J; Rocha BM
    Int J Numer Method Biomed Eng; 2018 Apr; 34(4):e2948. PubMed ID: 29181888
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The influence of left-ventricular shape on end-diastolic fiber stress and strain.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2887-90. PubMed ID: 19964050
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A monolithic 3D-0D coupled closed-loop model of the heart and the vascular system: Experiment-based parameter estimation for patient-specific cardiac mechanics.
    Hirschvogel M; Bassilious M; Jagschies L; Wildhirt SM; Gee MW
    Int J Numer Method Biomed Eng; 2017 Aug; 33(8):e2842. PubMed ID: 27743468
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Distribution of active fiber stress at the beginning of ejection depends on left-ventricular shape.
    Choi HF; D'hooge J; Rademakers FE; Claus P
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():2638-41. PubMed ID: 21096187
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A meshless rheological model for blood-vessel interaction in endovascular simulation.
    Chui YP; Heng PA
    Prog Biophys Mol Biol; 2010 Dec; 103(2-3):252-61. PubMed ID: 20868705
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Ventricular mechanics in diastole: material parameter sensitivity.
    Stevens C; Remme E; LeGrice I; Hunter P
    J Biomech; 2003 May; 36(5):737-48. PubMed ID: 12695004
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Smoothed particle hydrodynamics method applied to oral region: A narrative review.
    Onuma H; Inokoshi M; Minakuchi S
    Dent Mater J; 2023 Nov; 42(6):759-765. PubMed ID: 37940557
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.