These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Efficient Preparation of Site-Specific Antibody-Drug Conjugates Using Phosphopantetheinyl Transferases. Grünewald J; Klock HE; Cellitti SE; Bursulaya B; McMullan D; Jones DH; Chiu HP; Wang X; Patterson P; Zhou H; Vance J; Nigoghossian E; Tong H; Daniel D; Mallet W; Ou W; Uno T; Brock A; Lesley SA; Geierstanger BH Bioconjug Chem; 2015 Dec; 26(12):2554-62. PubMed ID: 26588668 [TBL] [Abstract][Full Text] [Related]
3. Phosphopantetheinyl transferase catalyzed site-specific protein labeling with ADP conjugated chemical probes. Zou Y; Yin J J Am Chem Soc; 2009 Jun; 131(22):7548-9. PubMed ID: 19441828 [TBL] [Abstract][Full Text] [Related]
4. Phage selection assisted by Sfp phosphopantetheinyl transferase-catalyzed site-specific protein labeling. Zhao B; Zhang K; Bhuripanyo K; Wang Y; Zhou H; Zhang M; Yin J Methods Mol Biol; 2015; 1266():161-70. PubMed ID: 25560074 [TBL] [Abstract][Full Text] [Related]
5. Genetically encoded short peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. Zhou Z; Cironi P; Lin AJ; Xu Y; Hrvatin S; Golan DE; Silver PA; Walsh CT; Yin J ACS Chem Biol; 2007 May; 2(5):337-46. PubMed ID: 17465518 [TBL] [Abstract][Full Text] [Related]
6. Optimization of an Enzymatic Antibody-Drug Conjugation Approach Based on Coenzyme A Analogs. Grünewald J; Jin Y; Vance J; Read J; Wang X; Wan Y; Zhou H; Ou W; Klock HE; Peters EC; Uno T; Brock A; Geierstanger BH Bioconjug Chem; 2017 Jul; 28(7):1906-1915. PubMed ID: 28590752 [TBL] [Abstract][Full Text] [Related]
7. Direct site-selective covalent protein immobilization catalyzed by a phosphopantetheinyl transferase. Wong LS; Thirlway J; Micklefield J J Am Chem Soc; 2008 Sep; 130(37):12456-64. PubMed ID: 18722432 [TBL] [Abstract][Full Text] [Related]
8. Labeling surface proteins with high specificity: Intrinsic limitations of phosphopantetheinyl transferase systems. Stüber JC; Plückthun A PLoS One; 2019; 14(12):e0226579. PubMed ID: 31856184 [TBL] [Abstract][Full Text] [Related]
9. Advances in the Development of Site-Specific Antibody-Drug Conjugation. Zhou Q; Kim J Anticancer Agents Med Chem; 2015; 15(7):828-36. PubMed ID: 25731178 [TBL] [Abstract][Full Text] [Related]
10. Chapter 10 using phosphopantetheinyl transferases for enzyme posttranslational activation, site specific protein labeling and identification of natural product biosynthetic gene clusters from bacterial genomes. Sunbul M; Zhang K; Yin J Methods Enzymol; 2009; 458():255-75. PubMed ID: 19374986 [TBL] [Abstract][Full Text] [Related]
11. Identification of a phosphopantetheinyl transferase for erythromycin biosynthesis in Saccharopolyspora erythraea. Weissman KJ; Hong H; Oliynyk M; Siskos AP; Leadlay PF Chembiochem; 2004 Jan; 5(1):116-25. PubMed ID: 14695521 [TBL] [Abstract][Full Text] [Related]
12. Antibody drug conjugates: design and selection of linker, payload and conjugation chemistry. McCombs JR; Owen SC AAPS J; 2015 Mar; 17(2):339-51. PubMed ID: 25604608 [TBL] [Abstract][Full Text] [Related]
13. Recent Chemical Approaches for Site-Specific Conjugation of Native Antibodies: Technologies toward Next-Generation Antibody-Drug Conjugates. Yamada K; Ito Y Chembiochem; 2019 Nov; 20(21):2729-2737. PubMed ID: 30973187 [TBL] [Abstract][Full Text] [Related]
14. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Strop P; Liu SH; Dorywalska M; Delaria K; Dushin RG; Tran TT; Ho WH; Farias S; Casas MG; Abdiche Y; Zhou D; Chandrasekaran R; Samain C; Loo C; Rossi A; Rickert M; Krimm S; Wong T; Chin SM; Yu J; Dilley J; Chaparro-Riggers J; Filzen GF; O'Donnell CJ; Wang F; Myers JS; Pons J; Shelton DL; Rajpal A Chem Biol; 2013 Feb; 20(2):161-7. PubMed ID: 23438745 [TBL] [Abstract][Full Text] [Related]
15. Aldehyde tag coupled with HIPS chemistry enables the production of ADCs conjugated site-specifically to different antibody regions with distinct in vivo efficacy and PK outcomes. Drake PM; Albers AE; Baker J; Banas S; Barfield RM; Bhat AS; de Hart GW; Garofalo AW; Holder P; Jones LC; Kudirka R; McFarland J; Zmolek W; Rabuka D Bioconjug Chem; 2014 Jul; 25(7):1331-41. PubMed ID: 24924618 [TBL] [Abstract][Full Text] [Related]
16. Site-specific protein labeling by Sfp phosphopantetheinyl transferase. Yin J; Lin AJ; Golan DE; Walsh CT Nat Protoc; 2006; 1(1):280-5. PubMed ID: 17406245 [TBL] [Abstract][Full Text] [Related]
18. The phosphopantetheinyl transferases: catalysis of a post-translational modification crucial for life. Beld J; Sonnenschein EC; Vickery CR; Noel JP; Burkart MD Nat Prod Rep; 2014 Jan; 31(1):61-108. PubMed ID: 24292120 [TBL] [Abstract][Full Text] [Related]
19. Synthesis of precision antibody conjugates using proximity-induced chemistry. Cao YJ; Yu C; Wu KL; Wang X; Liu D; Tian Z; Zhao L; Qi X; Loredo A; Chung A; Xiao H Theranostics; 2021; 11(18):9107-9117. PubMed ID: 34522229 [No Abstract] [Full Text] [Related]
20. An In Vitro and In Vivo Study of Broad-Range Phosphopantetheinyl Transferases for Heterologous Expression of Cyanobacterial Natural Products. Liu T; Mazmouz R; Neilan BA ACS Synth Biol; 2018 Apr; 7(4):1143-1151. PubMed ID: 29562128 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]