These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 31161517)

  • 1. Inducible, Selective Labeling of Proteins via Enzymatic Oxidation of Tyrosine.
    Bruins JJ; van de Wouw C; Keijzer JF; Albada B; van Delft FL
    Methods Mol Biol; 2019; 2012():357-368. PubMed ID: 31161517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inducible, Site-Specific Protein Labeling by Tyrosine Oxidation-Strain-Promoted (4 + 2) Cycloaddition.
    Bruins JJ; Westphal AH; Albada B; Wagner K; Bartels L; Spits H; van Berkel WJH; van Delft FL
    Bioconjug Chem; 2017 Apr; 28(4):1189-1193. PubMed ID: 28263569
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Strain-promoted oxidation-controlled cyclooctyne-1,2-quinone cycloaddition (SPOCQ) for fast and activatable protein conjugation.
    Borrmann A; Fatunsin O; Dommerholt J; Jonker AM; Löwik DW; van Hest JC; van Delft FL
    Bioconjug Chem; 2015 Feb; 26(2):257-61. PubMed ID: 25521043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Site-Selective Enzymatic Labeling of Designed Ankyrin Repeat Proteins Using Protein Farnesyltransferase.
    Zhang Y; Auger S; Schaefer JV; Plückthun A; Distefano MD
    Methods Mol Biol; 2019; 2033():207-219. PubMed ID: 31332756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two rapid catalyst-free click reactions for in vivo protein labeling of genetically encoded strained alkene/alkyne functionalities.
    Kurra Y; Odoi KA; Lee YJ; Yang Y; Lu T; Wheeler SE; Torres-Kolbus J; Deiters A; Liu WR
    Bioconjug Chem; 2014 Sep; 25(9):1730-8. PubMed ID: 25158039
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Site-selective tyrosine bioconjugation via photoredox catalysis for native-to-bioorthogonal protein transformation.
    Li BX; Kim DK; Bloom S; Huang RY; Qiao JX; Ewing WR; Oblinsky DG; Scholes GD; MacMillan DWC
    Nat Chem; 2021 Sep; 13(9):902-908. PubMed ID: 34183819
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Site-Specific Antibody Labeling Using Phosphopantetheinyl Transferase-Catalyzed Ligation.
    Grünewald J; Brock A; Geierstanger BH
    Methods Mol Biol; 2019; 2012():237-278. PubMed ID: 31161512
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tub-Tag Labeling; Chemoenzymatic Incorporation of Unnatural Amino Acids.
    Helma J; Leonhardt H; Hackenberger CPR; Schumacher D
    Methods Mol Biol; 2018; 1728():67-93. PubMed ID: 29404991
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Leveraging Formylglycine-Generating Enzyme for Production of Site-Specifically Modified Bioconjugates.
    Barfield RM; Rabuka D
    Methods Mol Biol; 2018; 1728():3-16. PubMed ID: 29404988
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Site-Selective, Chemical Modification of Protein at Aromatic Side Chain and Their Emergent Applications.
    Chowdhury A; Chatterjee S; Pongen A; Sarania D; Tripathi NM; Bandyopadhyay A
    Protein Pept Lett; 2021; 28(7):788-808. PubMed ID: 33511938
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rapid and Complete Surface Modification with Strain-Promoted Oxidation-Controlled Cyclooctyne-1,2-Quinone Cycloaddition (SPOCQ).
    Sen R; Escorihuela J; van Delft F; Zuilhof H
    Angew Chem Int Ed Engl; 2017 Mar; 56(12):3299-3303. PubMed ID: 28198134
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation of bispecific antibody-protein adducts by site-specific chemo-enzymatic conjugation.
    Bartels L; Ploegh HL; Spits H; Wagner K
    Methods; 2019 Feb; 154():93-101. PubMed ID: 30081077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tyrosine Conjugation Methods for Protein Labelling.
    Alvarez Dorta D; Deniaud D; Mével M; Gouin SG
    Chemistry; 2020 Nov; 26(63):14257-14269. PubMed ID: 32538529
    [TBL] [Abstract][Full Text] [Related]  

  • 14. From mechanism to mouse: a tale of two bioorthogonal reactions.
    Sletten EM; Bertozzi CR
    Acc Chem Res; 2011 Sep; 44(9):666-76. PubMed ID: 21838330
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, Optimization, and Structural Characterization of an Efficient Peptide-Based Photoaffinity Cross-Linking Reaction for Generation of Homogeneous Conjugates from Wild-Type Antibodies.
    Vance N; Zacharias N; Ultsch M; Li G; Fourie A; Liu P; LaFrance-Vanasse J; Ernst JA; Sandoval W; Kozak KR; Phillips G; Wang W; Sadowsky J
    Bioconjug Chem; 2019 Jan; 30(1):148-160. PubMed ID: 30566343
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative analysis of Cu (I)-catalyzed alkyne-azide cycloaddition (CuAAC) and strain-promoted alkyne-azide cycloaddition (SPAAC) in O-GlcNAc proteomics.
    Li S; Zhu H; Wang J; Wang X; Li X; Ma C; Wen L; Yu B; Wang Y; Li J; Wang PG
    Electrophoresis; 2016 Jun; 37(11):1431-6. PubMed ID: 26853435
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparative analysis of nanoparticle-antibody conjugations: carbodiimide versus click chemistry.
    Thorek DL; Elias DR; Tsourkas A
    Mol Imaging; 2009; 8(4):221-9. PubMed ID: 19728976
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oxidative protein labeling in mass-spectrometry-based proteomics.
    Roeser J; Bischoff R; Bruins AP; Permentier HP
    Anal Bioanal Chem; 2010 Aug; 397(8):3441-55. PubMed ID: 20155254
    [TBL] [Abstract][Full Text] [Related]  

  • 19. One-step site-specific antibody fragment auto-conjugation using SNAP-tag technology.
    Hussain AF; Heppenstall PA; Kampmeier F; Meinhold-Heerlein I; Barth S
    Nat Protoc; 2019 Nov; 14(11):3101-3125. PubMed ID: 31605098
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Click Chemistry Conjugations.
    Chio TI; Bane SL
    Methods Mol Biol; 2020; 2078():83-97. PubMed ID: 31643051
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.