BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

441 related articles for article (PubMed ID: 31161881)

  • 1. The effect of a physiological increase in temperature on mitochondrial fatty acid oxidation in rat myofibers.
    Tardo-Dino PE; Touron J; Baugé S; Bourdon S; Koulmann N; Malgoyre A
    J Appl Physiol (1985); 2019 Aug; 127(2):312-319. PubMed ID: 31161881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of heat acclimation on metabolic adaptations induced by endurance training in soleus rat muscle.
    Tardo-Dino PE; Taverny C; Siracusa J; Bourdon S; Baugé S; Koulmann N; Malgoyre A
    Physiol Rep; 2021 Aug; 9(16):e14686. PubMed ID: 34405575
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Temperature controls oxidative phosphorylation and reactive oxygen species production through uncoupling in rat skeletal muscle mitochondria.
    Jarmuszkiewicz W; Woyda-Ploszczyca A; Koziel A; Majerczak J; Zoladz JA
    Free Radic Biol Med; 2015 Jun; 83():12-20. PubMed ID: 25701433
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations to mitochondrial fatty-acid use in skeletal muscle after chronic exposure to hypoxia depend on metabolic phenotype.
    Malgoyre A; Chabert C; Tonini J; Koulmann N; Bigard X; Sanchez H
    J Appl Physiol (1985); 2017 Mar; 122(3):666-674. PubMed ID: 28035013
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reduced efficiency, but increased fat oxidation, in mitochondria from human skeletal muscle after 24-h ultraendurance exercise.
    Fernström M; Bakkman L; Tonkonogi M; Shabalina IG; Rozhdestvenskaya Z; Mattsson CM; Enqvist JK; Ekblom B; Sahlin K
    J Appl Physiol (1985); 2007 May; 102(5):1844-9. PubMed ID: 17234801
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Induction of endogenous uncoupling protein 3 suppresses mitochondrial oxidant emission during fatty acid-supported respiration.
    Anderson EJ; Yamazaki H; Neufer PD
    J Biol Chem; 2007 Oct; 282(43):31257-66. PubMed ID: 17761668
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mitochondrial tissue specificity of substrates utilization in rat cardiac and skeletal muscles.
    Ponsot E; Zoll J; N'guessan B; Ribera F; Lampert E; Richard R; Veksler V; Ventura-Clapier R; Mettauer B
    J Cell Physiol; 2005 Jun; 203(3):479-86. PubMed ID: 15521069
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flux control analysis of mitochondrial oxidative phosphorylation in rat skeletal muscle: pyruvate and palmitoyl-carnitine as substrates give different control patterns.
    Fritzen AJ; Grunnet N; Quistorff B
    Eur J Appl Physiol; 2007 Dec; 101(6):679-89. PubMed ID: 17717681
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial efficiency in rat skeletal muscle: influence of respiration rate, substrate and muscle type.
    Mogensen M; Sahlin K
    Acta Physiol Scand; 2005 Nov; 185(3):229-36. PubMed ID: 16218928
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crucial role of membrane potential in heat stress-induced overproduction of reactive oxygen species in avian skeletal muscle mitochondria.
    Kikusato M; Toyomizu M
    PLoS One; 2013; 8(5):e64412. PubMed ID: 23671714
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endurance training increases the efficiency of rat skeletal muscle mitochondria.
    Zoladz JA; Koziel A; Woyda-Ploszczyca A; Celichowski J; Jarmuszkiewicz W
    Pflugers Arch; 2016 Oct; 468(10):1709-24. PubMed ID: 27568192
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Excess lipid availability increases mitochondrial fatty acid oxidative capacity in muscle: evidence against a role for reduced fatty acid oxidation in lipid-induced insulin resistance in rodents.
    Turner N; Bruce CR; Beale SM; Hoehn KL; So T; Rolph MS; Cooney GJ
    Diabetes; 2007 Aug; 56(8):2085-92. PubMed ID: 17519422
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Long-chain acyl-CoA synthetase 6 regulates lipid synthesis and mitochondrial oxidative capacity in human and rat skeletal muscle.
    Teodoro BG; Sampaio IH; Bomfim LH; Queiroz AL; Silveira LR; Souza AO; Fernandes AM; Eberlin MN; Huang TY; Zheng D; Neufer PD; Cortright RN; Alberici LC
    J Physiol; 2017 Feb; 595(3):677-693. PubMed ID: 27647415
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Aging skeletal muscle mitochondria in the rat: decreased uncoupling protein-3 content.
    Kerner J; Turkaly PJ; Minkler PE; Hoppel CL
    Am J Physiol Endocrinol Metab; 2001 Nov; 281(5):E1054-62. PubMed ID: 11595663
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of hypoxia and endurance training on lipid metabolism in rat skeletal muscle.
    Galbès O; Goret L; Caillaud C; Mercier J; Obert P; Candau R; Py G
    Acta Physiol (Oxf); 2008 Jun; 193(2):163-73. PubMed ID: 18081885
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of temperature on fatty acid metabolism in skeletal muscle mitochondria of untrained and endurance-trained rats.
    Zoladz JA; Koziel A; Broniarek I; Woyda-Ploszczyca AM; Ogrodna K; Majerczak J; Celichowski J; Szkutnik Z; Jarmuszkiewicz W
    PLoS One; 2017; 12(12):e0189456. PubMed ID: 29232696
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Skeletal muscle mitochondria exhibit decreased pyruvate oxidation capacity and increased ROS emission during surgery-induced acute insulin resistance.
    Hagve M; Gjessing PF; Fuskevåg OM; Larsen TS; Irtun Ø
    Am J Physiol Endocrinol Metab; 2015 Apr; 308(8):E613-20. PubMed ID: 25670828
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mitochondrial respiration and ROS emission during β-oxidation in the heart: An experimental-computational study.
    Cortassa S; Sollott SJ; Aon MA
    PLoS Comput Biol; 2017 Jun; 13(6):e1005588. PubMed ID: 28598967
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selective PPARdelta agonist treatment increases skeletal muscle lipid metabolism without altering mitochondrial energy coupling: an in vivo magnetic resonance spectroscopy study.
    Jucker BM; Yang D; Casey WM; Olzinski AR; Williams C; Lenhard SC; Legos JJ; Hawk CT; Sarkar SK; Newsholme SJ
    Am J Physiol Endocrinol Metab; 2007 Nov; 293(5):E1256-64. PubMed ID: 17726146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cold tolerance of UCP1-ablated mice: a skeletal muscle mitochondria switch toward lipid oxidation with marked UCP3 up-regulation not associated with increased basal, fatty acid- or ROS-induced uncoupling or enhanced GDP effects.
    Shabalina IG; Hoeks J; Kramarova TV; Schrauwen P; Cannon B; Nedergaard J
    Biochim Biophys Acta; 2010; 1797(6-7):968-80. PubMed ID: 20227385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.