BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 31161996)

  • 21. Identification of the subtype-selective Sirt5 inhibitor balsalazide through systematic SAR analysis and rationalization via theoretical investigations.
    Glas C; Dietschreit JCB; Wössner N; Urban L; Ghazy E; Sippl W; Jung M; Ochsenfeld C; Bracher F
    Eur J Med Chem; 2020 Nov; 206():112676. PubMed ID: 32858418
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Mechanism-Based Inhibitors of the Human Sirtuin 5 Deacylase: Structure-Activity Relationship, Biostructural, and Kinetic Insight.
    Rajabi N; Auth M; Troelsen KR; Pannek M; Bhatt DP; Fontenas M; Hirschey MD; Steegborn C; Madsen AS; Olsen CA
    Angew Chem Int Ed Engl; 2017 Nov; 56(47):14836-14841. PubMed ID: 29044784
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Design, synthesis and biological evaluation of 2,4,6- trisubstituted triazine derivatives as new nonpeptide small-molecule SIRT5 inhibitors.
    Wang L; Hu L; Deng J; Hou S; Mou L; Lei P; Chen X; Liu J; Jiang Y; Xiong R; Tian X; Zhang W; Li R; Yang W; Yang L
    Bioorg Med Chem; 2023 Oct; 93():117455. PubMed ID: 37643500
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Identification of 2-hydroxybenzoic acid derivatives as selective SIRT5 inhibitors.
    Liu Y; Debnath B; Kumar S; Lombard DB; Neamati N
    Eur J Med Chem; 2022 Nov; 241():114623. PubMed ID: 35932566
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Thiosuccinyl peptides as Sirt5-specific inhibitors.
    He B; Du J; Lin H
    J Am Chem Soc; 2012 Feb; 134(4):1922-5. PubMed ID: 22263694
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Inhibitors of the NAD(+)-Dependent Protein Desuccinylase and Demalonylase Sirt5.
    Maurer B; Rumpf T; Scharfe M; Stolfa DA; Schmitt ML; He W; Verdin E; Sippl W; Jung M
    ACS Med Chem Lett; 2012 Dec; 3(12):1050-3. PubMed ID: 24900427
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bivalent SIRT1 inhibitors.
    Wang J; Zang W; Liu J; Zheng W
    Bioorg Med Chem Lett; 2017 Jan; 27(2):180-186. PubMed ID: 27964881
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Pyrazolone derivatives as potent and selective small-molecule SIRT5 inhibitors.
    Yao J; Yin Y; Han H; Chen S; Zheng Y; Liang B; Wu M; Shu K; Debnath B; Lombard DB; Wang Q; Cheng K; Neamati N; Liu Y
    Eur J Med Chem; 2023 Feb; 247():115024. PubMed ID: 36543033
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Discovery of potent and selective histone deacetylase inhibitors via focused combinatorial libraries of cyclic alpha3beta-tetrapeptides.
    Olsen CA; Ghadiri MR
    J Med Chem; 2009 Dec; 52(23):7836-46. PubMed ID: 19705846
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sensitive fluorogenic substrates for sirtuin deacylase inhibitor discovery.
    Yang LL; Wang HL; Yan YH; Liu S; Yu ZJ; Huang MY; Luo Y; Zheng X; Yu Y; Li GB
    Eur J Med Chem; 2020 Apr; 192():112201. PubMed ID: 32163813
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bicyclic tetrapeptides as potent HDAC inhibitors: effect of aliphatic loop position and hydrophobicity on inhibitory activity.
    Islam MN; Islam MS; Hoque MA; Kato T; Nishino N; Ito A; Yoshida M
    Bioorg Med Chem; 2014 Aug; 22(15):3862-70. PubMed ID: 25022972
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of Carboxylic Acid Isosteres and Prodrugs for Inhibition of the Human SIRT5 Lysine Deacylase Enzyme.
    Rajabi N; Hansen TN; Nielsen AL; Nguyen HT; Baek M; Bolding JE; Bahlke OØ; Petersen SEG; Bartling CRO; Strømgaard K; Olsen CA
    Angew Chem Int Ed Engl; 2022 May; 61(22):e202115805. PubMed ID: 35299278
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Design, Synthesis, and Biological Evaluation of 8-Mercapto-3,7-Dihydro-1
    Han H; Li C; Li M; Yang L; Zhao S; Wang Z; Liu H; Liu D
    Molecules; 2020 Jun; 25(12):. PubMed ID: 32549218
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Overview of SIRT5 as a potential therapeutic target: Structure, function and inhibitors.
    Wang Y; Chen H; Zha X
    Eur J Med Chem; 2022 Jun; 236():114363. PubMed ID: 35436671
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Copper(I)-Mediated Denitrogenative Macrocyclization for the Synthesis of Cyclic α
    Chen CC; Wang SF; Su YY; Lin YA; Lin PC
    Chem Asian J; 2017 Jun; 12(12):1326-1337. PubMed ID: 28395122
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Functions of the sirtuin deacylase SIRT5 in normal physiology and pathobiology.
    Kumar S; Lombard DB
    Crit Rev Biochem Mol Biol; 2018 Jun; 53(3):311-334. PubMed ID: 29637793
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Sirtuin 5: a review of structure, known inhibitors and clues for developing new inhibitors.
    Yang L; Ma X; He Y; Yuan C; Chen Q; Li G; Chen X
    Sci China Life Sci; 2017 Mar; 60(3):249-256. PubMed ID: 27858336
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A FRET-based assay for screening SIRT5 specific modulators.
    Li Y; Huang W; You L; Xie T; He B
    Bioorg Med Chem Lett; 2015 Apr; 25(8):1671-1674. PubMed ID: 25818461
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Function and regulation of the mitochondrial sirtuin isoform Sirt5 in Mammalia.
    Gertz M; Steegborn C
    Biochim Biophys Acta; 2010 Aug; 1804(8):1658-65. PubMed ID: 19766741
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Development of hetero-triaryls as a new chemotype for subtype-selective and potent Sirt5 inhibition.
    Glas C; Naydenova E; Lechner S; Wössner N; Yang L; Dietschreit JCB; Sun H; Jung M; Kuster B; Ochsenfeld C; Bracher F
    Eur J Med Chem; 2022 Oct; 240():114594. PubMed ID: 35853430
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.