BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 3116210)

  • 1. Electrophysiological properties of ependymal cells (radial glia) in dorsal cortex of the turtle, Pseudemys scripta.
    Connors BW; Ransom BR
    J Physiol; 1987 Apr; 385():287-306. PubMed ID: 3116210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Correlated electrophysiology and morphology of the ependyma in rat hypothalamus.
    Jarvis CR; Andrew RD
    J Neurosci; 1988 Oct; 8(10):3691-702. PubMed ID: 3193176
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cellular physiology of the turtle visual cortex: distinctive properties of pyramidal and stellate neurons.
    Connors BW; Kriegstein AR
    J Neurosci; 1986 Jan; 6(1):164-77. PubMed ID: 3944618
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ionic and electrophysiological properties of retinal Müller (glial) cells of the turtle.
    Conner JD; Detwiler PB; Sarthy PV
    J Physiol; 1985 May; 362():79-92. PubMed ID: 2410604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Slow depolarizing potentials recorded from glial cells in the rat superficial dorsal horn.
    Takahashi T; Tsuruhara H
    J Physiol; 1987 Jul; 388():597-610. PubMed ID: 2821245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. GFAP-expressing cells in the postnatal subventricular zone display a unique glial phenotype intermediate between radial glia and astrocytes.
    Liu X; Bolteus AJ; Balkin DM; Henschel O; Bordey A
    Glia; 2006 Oct; 54(5):394-410. PubMed ID: 16886203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of the apparent tissue conductivity in the molecular and granular layers of the in vitro turtle cerebellum and the interpretation of current source-density analysis.
    Okada YC; Huang JC; Rice ME; Tranchina D; Nicholson C
    J Neurophysiol; 1994 Aug; 72(2):742-53. PubMed ID: 7983532
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Dorsal root potentials and changes in extracellular potassium in the spinal cord of the frog.
    Nicoll RA
    J Physiol; 1979 May; 290(2):113-27. PubMed ID: 224169
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The inner lining of the reptilian brain: a heterogeneous cellular mosaic.
    Trujillo-Cenóz O; Marichal N; Rehermann MI; Russo RE
    Glia; 2014 Feb; 62(2):300-16. PubMed ID: 24317927
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stroke induces ependymal cell transformation into radial glia in the subventricular zone of the adult rodent brain.
    Zhang RL; Zhang ZG; Wang Y; LeTourneau Y; Liu XS; Zhang X; Gregg SR; Wang L; Chopp M
    J Cereb Blood Flow Metab; 2007 Jun; 27(6):1201-12. PubMed ID: 17200679
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Variation of membrane properties in hair cells isolated from the turtle cochlea.
    Art JJ; Fettiplace R
    J Physiol; 1987 Apr; 385():207-42. PubMed ID: 2443666
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synchronization without active chemical synapses during hippocampal afterdischarges.
    Taylor CP; Dudek FE
    J Neurophysiol; 1984 Jul; 52(1):143-55. PubMed ID: 6086854
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Precursors of neurons, neuroglia, and ependymal cells in the CNS: what are they? Where are they from? How do they get where they are going?
    Morest DK; Silver J
    Glia; 2003 Jul; 43(1):6-18. PubMed ID: 12761861
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spatial buffering during slow and paroxysmal sleep oscillations in cortical networks of glial cells in vivo.
    Amzica F; Massimini M; Manfridi A
    J Neurosci; 2002 Feb; 22(3):1042-53. PubMed ID: 11826133
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coupling and uncoupling of amphibian neuroglia.
    Tang CM; Orkand PM; Orkand RK
    Neurosci Lett; 1985 Mar; 54(2-3):237-42. PubMed ID: 3921878
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Monoclonal antibodies to the turtle cortex reveal neuronal subsets, antigenic cross-reactivity with the mammalian neocortex, and forebrain structures sharing a pallial derivation.
    Kriegstein AR; Shen JM; Eshhar N
    J Comp Neurol; 1986 Dec; 254(3):330-40. PubMed ID: 2432104
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adult ependymal cells are postmitotic and are derived from radial glial cells during embryogenesis.
    Spassky N; Merkle FT; Flames N; Tramontin AD; García-Verdugo JM; Alvarez-Buylla A
    J Neurosci; 2005 Jan; 25(1):10-8. PubMed ID: 15634762
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Activity-dependent changes in extracellular potassium and excitability in turtle olfactory nerve.
    Eng DL; Kocsis JD
    J Neurophysiol; 1987 Mar; 57(3):740-54. PubMed ID: 3559699
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane potential, resistance, and intercellular communication in the lacrimal gland: effects of acetylcholine and adrenaline.
    Iwatsuki N; Petersen OH
    J Physiol; 1978 Feb; 275():507-20. PubMed ID: 633148
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synaptic integration in a model of cerebellar granule cells.
    Gabbiani F; Midtgaard J; Knöpfel T
    J Neurophysiol; 1994 Aug; 72(2):999-1009. PubMed ID: 7527078
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.