BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 31162604)

  • 21. Integrating thermodynamic and sequence contexts improves protein-RNA binding prediction.
    Su Y; Luo Y; Zhao X; Liu Y; Peng J
    PLoS Comput Biol; 2019 Sep; 15(9):e1007283. PubMed ID: 31483777
    [TBL] [Abstract][Full Text] [Related]  

  • 22. SONAR Discovers RNA-Binding Proteins from Analysis of Large-Scale Protein-Protein Interactomes.
    Brannan KW; Jin W; Huelga SC; Banks CA; Gilmore JM; Florens L; Washburn MP; Van Nostrand EL; Pratt GA; Schwinn MK; Daniels DL; Yeo GW
    Mol Cell; 2016 Oct; 64(2):282-293. PubMed ID: 27720645
    [TBL] [Abstract][Full Text] [Related]  

  • 23. CRISPR/Cas9-mediated integration enables TAG-eCLIP of endogenously tagged RNA binding proteins.
    Van Nostrand EL; Gelboin-Burkhart C; Wang R; Pratt GA; Blue SM; Yeo GW
    Methods; 2017 Apr; 118-119():50-59. PubMed ID: 28003131
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Finding RNA-Protein Interaction Sites Using HMMs.
    Wang T; Yun J; Xie Y; Xiao G
    Methods Mol Biol; 2017; 1552():177-184. PubMed ID: 28224499
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Searching RNA motifs and their intermolecular contacts with constraint networks.
    Thébault P; de Givry S; Schiex T; Gaspin C
    Bioinformatics; 2006 Sep; 22(17):2074-80. PubMed ID: 16820426
    [TBL] [Abstract][Full Text] [Related]  

  • 26. DotAligner: identification and clustering of RNA structure motifs.
    Smith MA; Seemann SE; Quek XC; Mattick JS
    Genome Biol; 2017 Dec; 18(1):244. PubMed ID: 29284541
    [TBL] [Abstract][Full Text] [Related]  

  • 27. SpyCLIP: an easy-to-use and high-throughput compatible CLIP platform for the characterization of protein-RNA interactions with high accuracy.
    Zhao Y; Zhang Y; Teng Y; Liu K; Liu Y; Li W; Wu L
    Nucleic Acids Res; 2019 Apr; 47(6):e33. PubMed ID: 30715466
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).
    Lou TF; Weidmann CA; Killingsworth J; Tanaka Hall TM; Goldstrohm AC; Campbell ZT
    Methods; 2017 Apr; 118-119():171-181. PubMed ID: 27729296
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Genome-wide identification of protein binding sites on RNAs in mammalian cells.
    Liu F; Ma T; Zhang Y
    Biochem Biophys Res Commun; 2019 Jan; 508(3):953-958. PubMed ID: 30545631
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequence, Structure, and Context Preferences of Human RNA Binding Proteins.
    Dominguez D; Freese P; Alexis MS; Su A; Hochman M; Palden T; Bazile C; Lambert NJ; Van Nostrand EL; Pratt GA; Yeo GW; Graveley BR; Burge CB
    Mol Cell; 2018 Jun; 70(5):854-867.e9. PubMed ID: 29883606
    [TBL] [Abstract][Full Text] [Related]  

  • 31. DO-RIP-seq to quantify RNA binding sites transcriptome-wide.
    Nicholson CO; Friedersdorf MB; Bisogno LS; Keene JD
    Methods; 2017 Apr; 118-119():16-23. PubMed ID: 27840290
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The RNA-binding protein QKI5 regulates primary miR-124-1 processing via a distal RNA motif during erythropoiesis.
    Wang F; Song W; Zhao H; Ma Y; Li Y; Zhai D; Pi J; Si Y; Xu J; Dong L; Su R; Zhang M; Zhu Y; Ren X; Miao F; Liu W; Li F; Zhang J; He A; Shan G; Hui J; Wang L; Yu J
    Cell Res; 2017 Mar; 27(3):416-439. PubMed ID: 28244490
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Finding RNA structure in the unstructured RBPome.
    Orenstein Y; Ohler U; Berger B
    BMC Genomics; 2018 Feb; 19(1):154. PubMed ID: 29463232
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A novel method for the identification of conserved structural patterns in RNA: From small scale to high-throughput applications.
    Pietrosanto M; Mattei E; Helmer-Citterich M; Ferrè F
    Nucleic Acids Res; 2016 Oct; 44(18):8600-8609. PubMed ID: 27580722
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Dynamic changes in RNA-protein interactions and RNA secondary structure in mammalian erythropoiesis.
    Shan M; Ji X; Janssen K; Silverman IM; Humenik J; Garcia BA; Liebhaber SA; Gregory BD
    Life Sci Alliance; 2021 Sep; 4(9):. PubMed ID: 34315813
    [TBL] [Abstract][Full Text] [Related]  

  • 36. RBPmap: a web server for mapping binding sites of RNA-binding proteins.
    Paz I; Kosti I; Ares M; Cline M; Mandel-Gutfreund Y
    Nucleic Acids Res; 2014 Jul; 42(Web Server issue):W361-7. PubMed ID: 24829458
    [TBL] [Abstract][Full Text] [Related]  

  • 37. RNA-protein interactions: an overview.
    Re A; Joshi T; Kulberkyte E; Morris Q; Workman CT
    Methods Mol Biol; 2014; 1097():491-521. PubMed ID: 24639174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Computational analysis of CLIP-seq data.
    Uhl M; Houwaart T; Corrado G; Wright PR; Backofen R
    Methods; 2017 Apr; 118-119():60-72. PubMed ID: 28254606
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Using Protein Interaction Profile Sequencing (PIP-seq) to Identify RNA Secondary Structure and RNA-Protein Interaction Sites of Long Noncoding RNAs in Plants.
    Kramer MC; Gregory BD
    Methods Mol Biol; 2019; 1933():343-361. PubMed ID: 30945196
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Using RNA secondary structures to guide sequence motif finding towards single-stranded regions.
    Hiller M; Pudimat R; Busch A; Backofen R
    Nucleic Acids Res; 2006; 34(17):e117. PubMed ID: 16987907
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.