BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 3116274)

  • 1. Regulatory mutations that allow the growth of Escherichia coli on butanol as carbon source.
    Clark DP; Rod ML
    J Mol Evol; 1987; 25(2):151-8. PubMed ID: 3116274
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The use of suicide substrates to select mutants of Escherichia coli lacking enzymes of alcohol fermentation.
    Cunningham PR; Clark DP
    Mol Gen Genet; 1986 Dec; 205(3):487-93. PubMed ID: 3550385
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli.
    Inui M; Suda M; Kimura S; Yasuda K; Suzuki H; Toda H; Yamamoto S; Okino S; Suzuki N; Yukawa H
    Appl Microbiol Biotechnol; 2008 Jan; 77(6):1305-16. PubMed ID: 18060402
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of fatty acid degradation in Escherichia coli: fadR superrepressor mutants are unable to utilize fatty acids as the sole carbon source.
    Hughes KT; Simons RW; Nunn WD
    J Bacteriol; 1988 Apr; 170(4):1666-71. PubMed ID: 2895101
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel alcohol dehydrogenase activity in a mutant of Salmonella able to use ethanol as sole carbon source.
    Dailly Y; Mat-Jan F; Clark DP
    FEMS Microbiol Lett; 2001 Jul; 201(1):41-5. PubMed ID: 11445165
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acetaldehyde coenzyme A dehydrogenase of Escherichia coli.
    Clark DP; Cronan JE
    J Bacteriol; 1980 Oct; 144(1):179-84. PubMed ID: 6998946
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Escherichia coli derivatives lacking both alcohol dehydrogenase and phosphotransacetylase grow anaerobically by lactate fermentation.
    Gupta S; Clark DP
    J Bacteriol; 1989 Jul; 171(7):3650-5. PubMed ID: 2661531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of gene fadR in Escherichia coli acetate metabolism.
    Maloy SR; Nunn WD
    J Bacteriol; 1981 Oct; 148(1):83-90. PubMed ID: 7026540
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli mutants with altered control of alcohol dehydrogenase and nitrate reductase.
    Clark D; Cronan JE
    J Bacteriol; 1980 Jan; 141(1):177-83. PubMed ID: 6986356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli.
    Ohtake T; Pontrelli S; Laviña WA; Liao JC; Putri SP; Fukusaki E
    Metab Eng; 2017 May; 41():135-143. PubMed ID: 28400330
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid.
    Holland-Staley CA; Lee K; Clark DP; Cunningham PR
    J Bacteriol; 2000 Nov; 182(21):6049-54. PubMed ID: 11029424
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of plasmid-encoded aad in Clostridium acetobutylicum M5 restores vigorous butanol production.
    Nair RV; Papoutsakis ET
    J Bacteriol; 1994 Sep; 176(18):5843-6. PubMed ID: 8083176
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetic methanol auxotrophy of Escherichia coli for methanol-dependent growth and production.
    Chen CT; Chen FY; Bogorad IW; Wu TY; Zhang R; Lee AS; Liao JC
    Metab Eng; 2018 Sep; 49():257-266. PubMed ID: 30172686
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Engineering coenzyme A-dependent pathway from Clostridium saccharobutylicum in Escherichia coli for butanol production.
    Ye W; Li J; Han R; Xu G; Dong J; Ni Y
    Bioresour Technol; 2017 Jul; 235():140-148. PubMed ID: 28365341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement of lactate and succinate formation in adhE or pta-ackA mutants of NADH dehydrogenase-deficient Escherichia coli.
    Yun NR; San KY; Bennett GN
    J Appl Microbiol; 2005; 99(6):1404-12. PubMed ID: 16313413
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Ethanol catabolism in Corynebacterium glutamicum.
    Arndt A; Auchter M; Ishige T; Wendisch VF; Eikmanns BJ
    J Mol Microbiol Biotechnol; 2008; 15(4):222-33. PubMed ID: 17693703
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aadh2p: an Arxula adeninivorans alcohol dehydrogenase involved in the first step of the 1-butanol degradation pathway.
    Rauter M; Kasprzak J; Becker K; Riechen J; Worch S; Hartmann A; Mascher M; Scholz U; Baronian K; Bode R; Schauer F; Matthias Vorbrodt H; Kunze G
    Microb Cell Fact; 2016 Oct; 15(1):175. PubMed ID: 27733155
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Elucidating and reprogramming Escherichia coli metabolisms for obligate anaerobic n-butanol and isobutanol production.
    Trinh CT
    Appl Microbiol Biotechnol; 2012 Aug; 95(4):1083-94. PubMed ID: 22678028
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A synthetic O2 -tolerant butanol pathway exploiting native fatty acid biosynthesis in Escherichia coli.
    Pásztor A; Kallio P; Malatinszky D; Akhtar MK; Jones PR
    Biotechnol Bioeng; 2015 Jan; 112(1):120-8. PubMed ID: 24981220
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Isolation of a new butanol-producing Clostridium strain: high level of hemicellulosic activity and structure of solventogenesis genes of a new Clostridium saccharobutylicum isolate.
    Berezina OV; Brandt A; Yarotsky S; Schwarz WH; Zverlov VV
    Syst Appl Microbiol; 2009 Oct; 32(7):449-59. PubMed ID: 19674858
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.