These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

241 related articles for article (PubMed ID: 31163309)

  • 41. Retention and transport of graphene oxide in water-saturated limestone media.
    Dong S; Sun Y; Gao B; Shi X; Xu H; Wu J; Wu J
    Chemosphere; 2017 Aug; 180():506-512. PubMed ID: 28431388
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Quantification of two-site kinetic transport parameters of polystyrene nanoplastics in porous media.
    Wu Y; Cheng Z; Wu M; Hao Y; Lu G; Mo C; Li Q; Wu J; Wu J; Hu BX
    Chemosphere; 2023 Oct; 338():139506. PubMed ID: 37453519
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Retention of neodymium by dolomite at variable ionic strength as probed by batch and column experiments.
    Emerson HP; Zengotita F; Richmann M; Katsenovich Y; Reed DT; Dittrich TM
    J Environ Radioact; 2018 Oct; 190-191():89-96. PubMed ID: 29775842
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Concurrent agglomeration and straining govern the transport of
    Su Y; Gao B; Mao L
    Water Res; 2017 May; 115():84-93. PubMed ID: 28259817
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Co-transport of U(VI), humic acid and colloidal gibbsite in water-saturated porous media.
    Yang J; Ge M; Jin Q; Chen Z; Guo Z
    Chemosphere; 2019 Sep; 231():405-414. PubMed ID: 31146132
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Coupling of physical and chemical mechanisms of colloid straining in saturated porous media.
    Bradford SA; Torkzaban S; Walker SL
    Water Res; 2007 Jul; 41(13):3012-24. PubMed ID: 17475302
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Macromolecule mediated transport and retention of Escherichia coli O157:H7 in saturated porous media.
    Kim HN; Walker SL; Bradford SA
    Water Res; 2010 Feb; 44(4):1082-93. PubMed ID: 19853881
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Transport of Sulfide-Reduced Graphene Oxide in Saturated Quartz Sand: Cation-Dependent Retention Mechanisms.
    Xia T; Fortner JD; Zhu D; Qi Z; Chen W
    Environ Sci Technol; 2015 Oct; 49(19):11468-75. PubMed ID: 26348539
    [TBL] [Abstract][Full Text] [Related]  

  • 49. The influence of different charged poly (amido amine) dendrimer on the transport and deposition of bacteria in porous media.
    He L; Wu D; Tong M
    Water Res; 2019 Sep; 161():364-371. PubMed ID: 31220762
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Graphene oxide nanoparticles and hematite colloids behave oppositely in their co-transport in saturated porous media.
    Wang M; Zhang H; Chen W; Lu T; Yang H; Wang X; Lu M; Qi Z; Li D
    Chemosphere; 2021 Feb; 265():129081. PubMed ID: 33288283
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Role of grain-to-grain contacts on profiles of retained colloids in porous media in the presence of an energy barrier to deposition.
    Li X; Lin CL; Miller JD; Johnson WP
    Environ Sci Technol; 2006 Jun; 40(12):3769-74. PubMed ID: 16830540
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Transport of N-CD and Pre-Sorbed Pb in Saturated Porous Media.
    Kamrani S; Amiri V; Kamrani M; Baalousha M
    Molecules; 2020 Nov; 25(23):. PubMed ID: 33255652
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Adhesion mediated transport of bacterial pathogens in saturated sands coated by phyllosilicates and Al-oxides.
    Hong ZN; Jiang J; Li JY; Xu RK; Yan J
    Colloids Surf B Biointerfaces; 2019 Sep; 181():215-225. PubMed ID: 31146245
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Transport and retention of clay particles in saturated porous media. Influence of ionic strength and pore velocity.
    Compère F; Porel G; Delay F
    J Contam Hydrol; 2001 May; 49(1-2):1-21. PubMed ID: 11351511
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Transport and retention of reduced graphene oxide materials in saturated porous media: Synergistic effects of enhanced attachment and particle aggregation.
    Xia T; Ma P; Qi Y; Zhu L; Qi Z; Chen W
    Environ Pollut; 2019 Apr; 247():383-391. PubMed ID: 30690234
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Comparative study of polystyrene microplastic transport behavior in three different filter media: Quartz sand, zeolite, and anthracite.
    Liu H; Wen Y; Xu J
    J Contam Hydrol; 2024 Jul; 265():104395. PubMed ID: 39018629
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Transport and retention of functionalized graphene oxide nanoparticles in saturated/unsaturated porous media: Effects of flow velocity, ionic strength and initial particle concentration.
    Shahi M; Alavi Moghaddam MR; Hosseini SM; Hashemi H; Persson M; Kowsari E
    Chemosphere; 2024 Apr; 354():141714. PubMed ID: 38521106
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Measuring and modelling straining of Escherichia coli in saturated porous media.
    Foppen JW; van Herwerden M; Schijven J
    J Contam Hydrol; 2007 Aug; 93(1-4):236-54. PubMed ID: 17466406
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Transport of single-walled carbon nanotubes in porous media: filtration mechanisms and reversibility.
    Jaisi DP; Saleh NB; Blake RE; Elimelech M
    Environ Sci Technol; 2008 Nov; 42(22):8317-23. PubMed ID: 19068812
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of bacteria and virus on transport and retention of graphene oxide nanoparticles in natural limestone sediments.
    Ramazanpour Esfahani A; Batelaan O; Hutson JL; Fallowfield HJ
    Chemosphere; 2020 Jun; 248():125929. PubMed ID: 32014635
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 13.